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Band 4

Herausgegeben von

Prof. Dr. Florian Berding
Universität Hamburg

Prof. Dr. Tobias Schlömer
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1 Introduction 

Analyzing textual data via content analysis is a popular research method in the 

social sciences. Krippendorff (2019, p. 24) defines it as a “research technique for 

making reliable and valid inference from texts (or other meaningful matter) to 

the context of their use. [italic in the original]”. Yet the range of its applications 

is not limited to research. Data generated by content analysis can be a valuable 

source of information in other fields like education in the social sciences (Berding 

et al., 2022). In educational settings, textual data is omnipresent, manifested in 

artefacts such as explanations in school books, tasks on worksheets, in written 

essays or exams, in lesson plans or curricula, or in written communication 

between teachers and learners in digital learning environments.  

Textual data offers deep insights into learning and learning outcomes (e.g., 

Hußmann et al., 2007; Leuders, 2010; Sjuts, 2007, 2010). For example, if a 

teacher would like to know if their students have developed the “right” 

understanding of “prices” in an economic context, an easy way is to ask learners 

to develop their own explanations. These written explanations do not only give 

a teacher an idea about the learning outcome but also provide insight into the 

students’ understanding of the topic. This information can then be used for fine-

tuning further instruction. 

The approach to gather, analyze, and use data to improve learning and learning 

outcomes of individuals is discussed as learning analytics and is pursued through 

the creation of educational settings and learning processes that match the 

learners’ individual needs and conditions (e.g., Larusson & White, 2014, pp. 1–

2). Utilizing textual data for learning analytics requires a technology that is able 

to understand text-based sources like humans do. This leads to the application 

of artificial intelligence (AI), a technology that attempts to simulate human 

actions (Kleesiek et al., 2020, p. 24). Within educational settings, AI has to 

understand the textual information, summarize the information in categories of 

scientific models and theories, and derive the impact of the categories on further 

learning to provide recommendations for learners and teachers (Berding et al., 

2022). For example, if the analysis of a student’s text leads to the conclusion that 

the student has not acquired the “right” understanding of prices, it does not 

make sense to teach new topics that build on a valid understanding of prices. In 

this example, the student is expected to have a high risk of failing in a newly 

introduced topic. Thus, before teaching the new topic, more time and effort has 
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to be spent to help the student construct a valid understand of prices. In the 

contrasting case where a student writes an essay that implies a valid 

understanding of prices, it is more efficient to introduce a new topic as soon as 

possible.  

When employing content analysis in practical educational settings, teachers and 

other users need to ensure the same quality criteria as within sciences, namely 

objectivity, reliability and validity (Hesse & Latzko, 2011, p. 70; Ingenkamp & 

Lissmann, 2008, p. 51). Thus, the issue with quality in the scope of content 

analysis is the same for practice and research, and for both human and artificial 

intelligence. For this research method in particular, special criteria focusing on 

reliability have emerged in the last decades. Reliability is a central characteristic 

of any assessment instrument, and describes the extent to which the instrument 

produces error-free data (Schreier, 2012, pp. 166–167). Krippendorff (2019, p. 

281, p. 283) suggests replicability as a fundamental reliability concept, which is 

also referred to as inter-rater reliability. This describes the degree to which “a 

process can be reproduced by different analysts, working under varying 

conditions, at different locations, or using different but functionally equivalent 

measuring instruments” (Krippendorff, 2019, p. 281).  

Past decades have seen a large number of reliability measures being suggested. 

A study by Hove et al. (2018) shows that the 20 reliability measures they 

investigated differ in their numeric values for the same data, making an 

evaluation of the quality of content analysis difficult. Krippendorff’s Alpha is 

currently the most frequently recommended reliability measure (Hayes & 

Krippendorff, 2007), as it can be applied to variables of any kind (nominal, 

ordinal, and metric), to any number of raters and to data with missing cases and 

unequal sample sizes; all while comprising chance correction (Krippendorff, 

2019, p. 291). Thus, it is not surprising that Krippendoff’s Alpha has become one 

of the most popular measures of reliability for content analysis in research 

(Lovejoy et al., 2016, p. 1150). Currently, this measure is also evaluated for 

characterizing the quality of input data for machine learning (Song et al., 2020). 

Recent years however have seen the advantages of Krippendorff’s Alpha being 

questioned and controversially discussed (Feng & Zhao, 2016; Krippendorff, 

2016; Zhao et al., 2018). Zhao et al. (2013) analyzed different reliability measures, 

concluding that Krippendorff’s Alpha contains problematic assumptions and 

produces the highest number of paradoxes and abnormalities amongst all 
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included measures. For example, they argue that Alpha penalizes improved 

coding. That is, if raters correct errors, the values for Alpha can decrease (Zhao 

et al., 2013, p. 457). Furthermore, cases exist where rater agreement is nearly 

100%, while the Alpha values are about 0, indicating the absence of reliability. 

Based on their findings, Zhao et al. (2013, p. 475) recommend developing and 

trying new reliability measures. Feng and Zhao (2016, p. 146) suggest not to base 

new approaches on classical test theory, but on item response theory. 

In classical test theory, reliability is characterized with measures such as 

Cronbach’s Alpha. These measures produce a single numeric value for a 

complete scale. Item response theory however, is more detailed. With the help 

of the test information curve, the reliability of a scale can be investigated for 

different characteristics of that scale (e.g., Ayala, 2009, pp. 27–33; Baker & Kim, 

2017, pp. 96–98). Furthermore, some models of item response theory such as 

Rasch models offer the opportunity to investigate if a scale produces bias for 

different groups of individuals. That is, they allow to investigate if an instrument 

functions similarly for different groups of people (subgroup invariance) (e.g., 

Baker & Kim, 2017, pp. 38–42).  

Berding et al. (2022) transferred the idea of item response theory to content 

analysis by suggesting the Iota Reliability Concept. This concept provides several 

measures for characterizing the reliability of every single category of a coding 

scheme. In addition, the concept is able to produce insights into how errors in 

one category influence the data representing other categories, and how data 

may be biased for different groups of individuals. In the first study, the Iota 

Concept showed promising statistical properties such as high values for 

recovering the true reliability of a category, independence from the number of 

raters, the number of categories, the underlying distribution of categories, and 

the sample size. The Iota Concept showed a comparable ability as Krippendorff’s 

Alpha to predict the deviation between the true and estimated relationship for 

two ordinal variables.  

However, the study by Berding et al. (2022) is limited. The true reliability is 

modeled with the assumption that the reliability is the same over all categories 

and that the second ordinal variable is measured with perfect reliability. Both 

assumptions pose restrictions for applications in science and practice. In 

particular, rules of thumb for judging about the quality of a content analysis may 

be inadequate if these rules rely on the assumption that the other variables are 
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measured with perfect reliability. More realistic rules have to be derived on the 

assumption that all variables vary in their reliability and that a relationship 

between the variables is not perfect.  

Thus, the work in this researcher’s guide aims to address these limitations and to 

further improve the methodology of content analysis. To reach this aim, the 

guide develops a new and improved version of the Iota Concept. The scientific 

and practical value added is composed of 

• providing insights into the reliability of every single category. Previous 

measures often used in content analysis such as Krippendorff’s Alpha, 

Percentage Agreement, Scott’s Pi, and Cohen’s Kappa (Lovejoy et al., 2016) 

describe the reliability of a scale with one single numeric value assuming 

that the reliability is constant for the complete scale (Feng and Zhao, 2016). 

The Iota Concept adapts the basic ideas of modern test theory (Ayala, 2009; 

Baker and Kim, 2017; Bonifay, 2020; Paek and Cole, 2020) and overcomes 

this limitation (Berding et al., 2022). These insights can help in the 

construction of a coding scheme by directly showing where the coding 

scheme is performing well and where improvements are necessary.  

• providing insights into how a coding scheme may produce bias for different 

groups of individuals/materials. These insights can be used to evaluate 

scientific research and/or to review coding schemes to avoid these 

contortions. This is particular important if the data from content analysis is 

used within AI-based learning analytics, since artificial intelligence can 

reproduce advantages or disadvantages for specific groups of learners, 

which are an implicit part of data (Luan et al., 2020, p. 5; Seufert et al., 2021, 

pp. 14–15). 

• providing rules of thumb for evaluating content analysis. Deriving rules of 

thumb for evaluating the quality of content analysis under realistic 

conditions ensures a high certainty for generating reliable data while save 

costs at the same time. 

• providing possibilities for data replication. Most literature on content 

analysis concentrates on the development and evaluation of new coding 

schemes (Früh, 2017; Krippendorff, 2019; Kuckartz, 2018; Mayring, 2015; 

Schreier, 2012). Less emphasis is put on the application of an existing coding 

scheme to new data by new raters. The new Iota Concept aims to provide a 

framework that allows the assessment of reliability in these situations. The 



 Berding & Pargmann 

 

5 

generated insights can be used for the specific training of new raters or to 

evaluate the quality of machine learning. 

• providing error-corrected data. Modern statistical techniques such as latent 

modeling do not assume that a construct is measured with perfect reliability 

and provide methods for calculating error-corrected data (Geiser, 2013, 

p. 40; Wang & Wang, 2020, p. 1). The updated Iota Concept aims to provide 

such a technique for the method of content analysis. 

In chapter 2, we present a short summary of the old Iota Concept as described in 

Berding et al. (2022) as an introduction into the concept. The third chapter 

presents a refined version of the Iota Concept and compares the new version to 

the old one.  

Chapter 4 introduces an estimation algorithm based on the techniques of 

Maximum Likelihood Estimation to estimate the parameters of the new concept. 

In chapter 5, a simulation study is performed to investigate the probabilities of 

the new algorithm where 415,291 coding processes based on 10,514 sets of true 

parameters are simulated. Altogether 7,093,054 parameters are estimated. The 

analysis of these parameters includes the effects of the sample size, the number 

of raters, the number of categories, and the shape of the true distribution on the 

accuracy of the estimates.  

After providing insight into the quality of the estimates, a second simulation 

study investigates the new concept’s ability to predict coding quality (chapter 6). 

This is characterized by the deviation between the true and the estimated sample 

association/correlation, the risk of Type I and Type II Errors, and by the chance 

to correctly classify the effect size according to the work of Cohen (1988). In this 

study, the assessment of a coding scheme’s reliability and the corresponding 

coding process are being simulated. The analysis is based on 6,044,572 coding 

processes. These coding processes are nested within 201,486 reliability 

estimations prior to coding. Both processes (reliability estimation and coding) are 

based on 25,399 different sets of true parameters. In this simulation, the 

reliability of both variables varies and the strength of association/correlation is 

modeled through the respective rules for effect sizes developed by Cohen (1988). 

These rules provide guidelines for deciding if an association/a correlation is of 

no, small, medium or strong practical importance. The simulation also includes a 

comparison with the old Iota Concept, Krippendorff’s Alpha and Percentage 

Agreement. In consequence, realistic cut-off values will be derived from 
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modeling the relationship between estimated reliability values and the measures 

which characterize the quality of the generated data. Chapter 7 describes a third 

simulation study which aims to improve the reliability measures on the scale 

level, based on the insights from the second simulation study.  

The illustrations end with a summary and a discussion of the results in chapter 8. 

In the final chapter, we discuss some practical examples for the application of 

the new concept using the R package iotarelr. 
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2 Summarizing the Iota Concept of the First Generation 

The Iota Concept of the first generation (Berding et al., 2022) is based on the 

following six assumptions: 

1. The core of content analysis is a scheme guiding raters to assign a coding 
unit to a category. Here, reliability is a property of a coding scheme, not of 
raters.  

2. The categories form a nominal or ordinal scale with discrete values.  
3. Every coding unit must be assigned completely to one category (thus, it is 

not possible to assign 50% of the unit to category 1 and the other 50% to 
category 2). 

4. Every coding unit can be assigned to at least one category. 
5. Raters judge the category of a coding unit by using a coding scheme or by 

guessing. 
6. Reliability can vary for each category. 

Figure 1 illustrates the model behind these assumptions. Raters use a coding 

scheme as a tool for assigning a category to a coding unit (see the arrows in the 

figure). The coding scheme defines the range of possible categories and provides 

definitions, rules, and examples as clearly as possible to guide raters in their work 

(see the coding scheme in the figure). In the best case, the coding scheme is so 

clear that every rater assigns the same category to a coding unit if the conditions 

for the specific category are satisfied (see arrow between the table on right and 

the coding units on the bottom left).  

 

Figure 1. Coding Model of the Iota Concept 
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In practice, however, a coding scheme is not perfect. Thus, errors may occur. In 

Figure 1, rater B assigns coding unit A to category 1 and coding unit B to category 

2, which is both correct. In the case of coding unit C, a mistake occurs. Rater B 

assigns this unit to category 1 instead of category 2. This mistake has two 

implications. First, the data generated by rater B underestimates the frequency 

of category 2. Second, the mistake leads to an overestimation of category 1. 

Thus, an error in recovering one true category always has an impact on the data 

generated for the other categories. To account for these different types of errors, 

the Iota Concept differentiates between the true category of a coding unit and 

the assigned category of a coding unit. If a coding scheme is reliable, both 

categories match each other. Consequently, the concept consists of the following 

three elements, and it also entails a special matrix for the description of the 

coding scheme’s reliability, as well as two corresponding types of errors: 

• Alpha Elements: The Alpha Elements account for the probability that a rater 

using the coding scheme is able to assign the true category to a coding unit. 

Thus, the Alpha Reliability of category 𝑖 describes the conditional probability 

to assign category 𝑖 to a coding unit if the true category of that coding unit 

is 𝑖. The Alpha Error of category 𝑖 is the complementary probability to the 

Alpha Reliability. That is, the probability to assign category 𝑗 with 𝑗 ≠ 𝑖 to 

the coding unit if the true category of that coding unit is 𝑖.  

• Beta Elements: The Beta Elements are used to describe situations in more 

detail in which Alpha Errors occur. In these situations, a coding unit with the 

true category 𝑗 is assigned to category 𝑖 with 𝑗 ≠ 𝑖. Thus, the data of 

category 𝑖 is biased since it comprises frequencies which truly belong to any 

of the other categories. The Beta Error of category 𝑖 describes the 

probability to assign a coding unit of any other category as 𝑖 to category 𝑖. 

The Beta Reliability of category 𝑖 is the complementary probability and 

characterizes the probability that all other coding units are not assigned to 

category 𝑖. 

• Iota Elements: The Iota Elements combine both Alpha and Beta Elements 

and correct the values for guessing. Mathematically, Iota of category 𝑖 is the 

mean of the chance-corrected Alpha and Beta Reliability. The index ranges 

from 0 – indicating that the ratings of category 𝑖 equals guessing – to 1 – 

indicating perfect reliability. 

• Assignment Error Matrix (AEM): The Assignment Error Matrix provides the 

most detailed description of a coding scheme’s reliability. The diagonal cells 
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(top left to bottom right) show the Alpha Error for the specific category. The 

remaining cells describe the probability that an Alpha Error guides the raters 

towards assigning a coding unit to another specific category. Thus, these 

cells describe the Beta Error in more detail. The interpretation of this matrix 

can best be explained using the example shown in Table 1. The Alpha Error 

for category 1 is about 47%. That is, in about 47% of cases, a coding unit that 

truly belongs to category 1 is assigned to another category. When this error 

occurs, about 71% of cases are assigned to category 2, and about 29% of 

cases are assigned to category 3. Here, category 2 is more strongly impacted 

by coding errors of category 1 than category 3. 

Table 1. An Example of an Assignment Error Matrix of First-Generation Iota 
 

Assigned Category 

True 
Category 

 1 2 3 

1 .471 .709 .291 
2 .690 .959 .310 

3 .478 .522 .941 

• Minimum/Average Iota: In many applications, not only the reliability of 

each category is important but also how the categories work together as a 

scale. For the description of the reliability on a scale level, the first 

generation of the concept suggests the average or the minimum of the Iota 

values as a reliability measure. 

In the development study conducted by Berding et al. (2022), the new measure 

yielded promising results as it is unaffected by sample size, the number of 

categories and the number of raters. 
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3 Introducing Iota Concept of the Second Generation 

3.1 Refining the Assignment Error Matrix, the Alpha and the Beta Elements 

In contrast to the first generation of Iota, where the Assignment Error Matrix is 

a result of the Alpha and Beta elements, in the second generation, the 

Assignment Error Matrix represents the central object. This includes a small 

redefinition of its components, illustrated by Table 2. 

Table 2. Example of an Estimated Assignment Error Matrix of the Second 
Generation 

  Assigned Category 
  0 1 2 

True 
Category 

0 .508 .392 .100 

1 .000 .823 .177 
2 .237 .000 .763 

The Assignment Error Matrix represents the true category in the rows and the 

assigned category in the columns. The values in the cells describe the conditional 

probability that a coding unit of category 𝑖 is assigned to category 𝑗. For example, 

the probability to assign category 0 to a coding unit truly belonging to category 

0 is about 51%%. The probability to assign category 1 to a coding unit which truly 

belongs to category 0 is about 39%% and the probability to assign such a coding 

unit to category 2 is about 10%%. Thus, the cells on the diagonal represent the 

probability to assign the right category to a coding unit. 

Based on the Assignment Error Matrix, the Alpha Reliability can be defined. The 

Alpha Reliability of category 𝑖 is the probability that a coding unit with the true 

category 𝑖 is assigned to category 𝑖. Thus, the different Alpha Reliabilities equal 

the diagonal of the Assignment Error Matrix. The Alpha Error of category 𝑖 is the 

complementary probability. That is, the conditional probability to assign a coding 

unit of category 𝑖 to any of the other categories. The following equations apply: 

 𝛼𝑖
𝑟𝑒𝑙 = 𝑎𝑒𝑚(𝑖, 𝑖) [1] 

 𝛼𝑖
𝑒𝑟𝑟 = 1 − 𝑎𝑒𝑚(𝑖, 𝑖) [2] 

In Table 2, the Alpha Reliability of category 0 is about 51%%, meaning that in 

about every second case a coding unit of category 0 is assigned to category 0. For 

category 1, the Alpha Reliability is about 82%%. That is, a coding unit truly 

belonging to category 1 is assigned to category 1 in most cases. For category 3, a 
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similar result occurs. About 76%% of the coding units belonging to category 3 are 

assigned to the right category. 

Related to the data generated by the coding scheme of Table 2, 49%% of the 

coding units belonging to category 0 are not correctly recognized. Thus, these 

units are missing in the data characterizing category 0. Furthermore, these 49%% 

are falsely assigned either to category 1 or 2 and thus skew the data of both of 

these categories. The Beta Reliability and the Beta Error characterize this 

phenomenon.  

With the help of the Assignment Error Matrix, the Beta Error can be defined. The 

Beta Error describes the probability that coding units truly belonging to any other 

category than 𝑖 are assigned to category 𝑖. Equation 3 shows the corresponding 

expression. 

 
𝛽𝑖

𝑒𝑟𝑟 =
∑ 𝑝𝑘 ∗ 𝑎𝑒𝑚(𝑘, 𝑖)𝑘≠𝑖

∑ 𝑝𝑘 ∗ 𝛼𝑘
𝑒𝑟𝑟

𝑘≠𝑖

 [3] 

First, we concentrate on the denominator. The necessary condition for the Beta 

Error is that an Alpha Error occurs for a coding unit belonging to any other 

category than 𝑖. That is, a rater has to fail on discovering the true category of a 

coding unit in order to have the chance to assign the coding unit to any other 

category. These other categories are represented with 𝑘 in the equation.  

Furthermore, the probability of assigning a coding unit to any other category 

than the correct one increases if the amount of the categories increases in the 

population. The more coding units of a specific category exist in a population, the 

greater the chance to assign these coding units to another category. Thus, the 

Alpha Errors have to be weighted with the frequency with which a category 

appears in the population, represented with 𝑝𝑘in Equation 3. 

While the denominator characterizes the general probability for making an error, 

the numerator concentrates on the category under investigation. The numerator 

is the probability that coding units of any other category are assigned to category 

𝑖.  

Based on this equation, the Beta Reliability is the complementary probability of 

the Beta Error, defined as the probability that coding units of any other 

categories than 𝑖 are not assigned to category 𝑖. 
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 𝛽𝑖
𝑟𝑒𝑙 = 1 − 𝛽𝑖

𝑒𝑟𝑟 [4] 

The meaning of the Beta Elements can be explained with an example from Table 

2. All values which Table 2 implies can be found in Table 3. It is assumed that the 

quantity of coding units within the categories of the population are about  

𝑝0 = .674, 𝑝1 = .182 and 𝑝2 = .144. About 67.4%% of the coding units truly 

belong to category 0, 18.2%% to category 1 and about 14.4%% of the coding units 

belong to the true category 2. The Assignment Error Matrix in Table 2 implies a 

Beta Reliability of about 48%% for category 0, of 28%% for category 1 and of 

73%% for category 2. The value of category 0 means that in 48%% of cases, Alpha 

Errors in the other categories are not assigned to category 0. In contrast, the Beta 

Reliability of category 1 means that only in 28%% of cases Alpha Errors in the 

other categories are not assigned to category 1. In other words: in 72%% of cases, 

an Alpha Error on coding units belonging truly to category 0 or 2 leads to an 

assignment of these coding units to category 1. Thus, category 1 suffers more 

strongly from errors in other categories than category 0. 

Table 3. Example of the Different Elements 

  𝛼𝑖
𝑟𝑒𝑙 𝛽𝑖

𝑟𝑒𝑙 𝑝𝑖 𝐴𝑖
𝑟𝑒𝑙 𝐵𝑖

𝑟𝑒𝑙 

Category 
0 .508 .484 .674 .262 -.032 
1 .823 .279 .182 .734 -.443 

2 .763 .723 .144 .644 .451 

With the Beta Elements, Alpha Elements and the Assignment Error Matrix, the 

Iota Concept of the second generation provides detailed insight into the data 

generated by a coding scheme. For a correct interpretation, it is helpful to 

compare these values with values which would occur with complete guessing. 

The following section introduces these values.  

3.2 Introducing the Chance-Correction for Alpha and Beta Elements 

To compare the quality of a coding scheme with guesswork, the equations of 

section 3.1 can be applied. Only the Assignment Error Matrix changes. In this 

case, the cells of the matrix equal 1/𝑐 as shown in Table 4. Such a matrix assigns 

the categories to a coding unit completely randomly, regardless of their true 

category. 
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Table 4. Example of an Assignment Error Matrix in the Case of Complete 
Guessing 

  Assigned Category 
  0 1 2 

True 
Category 

0 1/3 1/3 1/3 

1 1/3 1/3 1/3 
2 1/3 1/3 1/3 

With Equation 2, the chance-corrected Alpha Reliability is given by Equation 5. 

 

𝐴𝑖
𝑟𝑒𝑙 =

𝛼𝑖
𝑟𝑒𝑙 −

1
𝑐

1 −
1
𝑐

 [5] 

The denominator is used to normalize the values. Thus, the chance-corrected 

Alpha Reliability equals 0 in the case that the probability to assign the true 

category to a coding unit equals guessing. The chance-corrected Alpha Reliability 

equals 1 in the case that the true coding unit is always recovered. 

Similarly, the chance-corrected Beta Reliability can be calculated. The Beta Error 

under the condition of complete guessing without normalization is given with 

Equation 6 by 

 

𝑏𝑖
𝑒𝑟𝑟 =

∑ 𝑝𝑘 ∗
1
𝑐𝑘≠𝑖

∑ 𝑝𝑘 ∗𝑘≠𝑖 (1 −
1
𝑐

)
 [6] 

Thus, the chance-corrected normalized Beta Reliability is given by 

 
𝐵𝑖

𝑟𝑒𝑙 =
𝛽𝑖

𝑟𝑒𝑙 − (1 − 𝑏𝑖
𝑒𝑟𝑟)

1 − (1 − 𝑏𝑖
𝑒𝑟𝑟)

 [7] 

A chance-corrected Beta Reliability of 0 indicates that the reliability equals 

complete guessing. A value of 1 indicates perfect reliability meaning that errors 

in the other categories do not influence the category under investigation. A value 

below zero indicates that the Beta Reliability is even lower than it should be 

expected by complete guessing. 

The chance-corrected values can be illustrated with the example from section 

3.1. Table 3 reports the corresponding values. The chance-corrected Alpha 

Reliabilities for the three categories are greater than zero, indicating that the 

coding scheme offers some stable recovery of the true categories. In other 
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words: the coding scheme recovers the true category better than complete 

guessing. In particular, the Alpha Reliability of category 1 and 2 is high. 

Concentrating on the chance-corrected Beta Reliabilities, Table 3 shows that only 

category 2 has a value above zero, indicating that the coding scheme does not 

heavily bias the data of this category due to errors in the other categories. The 

reliability is better compared to complete guessing. In contrast, the Beta 

Reliabilities of category 0 and 1 are below zero. This means that the data of both 

of these categories suffers from errors made on the other categories more 

strongly than expected by complete guessing. In other words: Complete guessing 

produces a smaller bias than working with this coding scheme.  

3.3 Refining Iota 

In the Iota Concept of the first generation, the mean of the chance-corrected 

Alpha Reliability and chance-corrected Beta Reliability is used to characterize the 

complete amount of reliability of a category. In the second generation, this 

definition is no longer used since both values are not standardized to values 

above zero. Instead, a new definition that allows an improved interpretation is 

introduced. Figure 2 illustrates this redefinition. 

 

Figure 2. Iota in the Concept of the Second Generation 

Three cases can occur when concentrating on the data generated by a coding 

scheme. First, the true category of a coding unit can be recovered. Thus, the data 

reflects the true category correctly (Iota). Second, the true category of a coding 

unit is not recovered. Thus, some observations are missing in the data of that 

category (Iota Error – Type I). Third, mistakes in the other categories lead raters 

to assign a coding unit to the category under investigation. Thus, the data of that 

category comprises too many observations (Iota Error – Type II). For a reliable 



Iota Reliability Concept of the Second Generation  

 

16 

reflection of a category, case 1 (Iota) should be maximized and cases 2 

(Iota Error – Type I) and 3 (Iota Error – Type II) minimized. With Figure 3, the idea 

behind Iota can be explained in more detail. 

 

Figure 3. Illustrating Iota and its Errors 

The first row in Figure 3 represents all coding units which truly belong to category 

𝑖. During coding, the true category of these coding units can be either assigned 

correctly or incorrectly. This is illustrated in the second row of Figure 3. The green 

part of the bar represents the number of correctly assigned units while the 

yellow part of the bar represents the coding units which are not assigned to their 

true category. As a consequence, the data that should represent category 𝑖 

comprises only a part of the truly relevant coding units (in Figure 3 about half of 

the relevant units). The missing coding units lead to an underestimation of the 

number of units belonging to category 𝑖. Additionally, errors made in the other 

categories can lead raters to assign coding units to category 𝑖 which do not 

belong to the data of category 𝑖. This is illustrated by the red part of the bar in 

the third row of Figure 3. Thus, the red part of the bar represents the number of 

coding units that belong to other categories and thus are incorrectly assigned to 

category 𝑖. These coding units contribute to an overestimation of the number of 

coding units of category 𝑖. In Figure 3, the green part of the bar of row three 

refers to Iota, the yellow part of the bar of row three to Iota Error – Type I and 

the red part of the bar of row three to Iota Error – Type II. 
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The new Iota takes these suggestions into account and describes the number of 

correctly assigned coding units on all assignments referring to that category. 

Mathematically, this can be expressed with Equation 8.  

 
Ι𝑖 =

𝑝𝑖 ∗ 𝛼𝑖
𝑟𝑒𝑙

𝑝𝑖 ∗ 𝛼𝑖
𝑟𝑒𝑙 + 𝑝𝑖 ∗ 𝛼𝑖

𝑒𝑟𝑟 + 𝑏𝑖
𝑒𝑟𝑟 ∗ ∑ (𝑝𝑘 ∗ 𝛼𝑘

𝑒𝑟𝑟)𝑘≠𝑖

 [8] 

Figure 4 shows the results for the example from section 3.1. The green rectangle 

represents the Iota value while the orange and red rectangles characterize the 

amounts of cases 2 and 3. 

 

Figure 4. Example for Iota of the Second Generation 

In Figure 4 it is visible that Iota is the highest for category 0. The data representing 

category 0 is composed of 48% of coding units of category 0. About 47% of the 

data are missing coding units of that category. Thus, only about half of the coding 

units truly belonging to category 0 are represented in the data (
.48

.48+.47
= .505). 
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About 5% of the data representing category 0 is made up of coding units from 

other categories.  

Regarding category 1, a Iota value of .335 indicates that about one-third of the 

data representing this category is made up of the correct coding units. Still, about 

7% of the relevant data are missing coding units. Thus, the data representing 

category 1 comprises about 82% of the coding units truly belonging to category 1 

(
.335

.335+.072
= .823). However, Iota Error – Type II is about 60%. This indicates that 

more than half the coding units representing category 1 are truly coding units 

belonging to other categories. As a consequence, the total number of coding 

units in category 1 is overestimated.  

For category 2, the situation is similar. About 41% of the coding units forming the 

data for category 2 truly belong to another category while only about 14% of the 

data are “forgotten” coding units with the correct true category. In line with 

these results, Iota is about .451. Thus, the data of this category is heavily biased 

by errors in the other categories.  

Referring to Table 3, Iota is significantly smaller than the average Alpha and Beta 

Reliabilities for category 2. The reason for this interesting result is that the coding 

scheme leads raters to assign a part of the coding units truly belonging to 

categories 0 and 1 to category 2 and the size of category 0 is meaningfully greater 

than the size of category 2 (see Table 3). Due to the large size of category 0, a 

great number of coding units is assigned to a category of a very small size. This 

leads to a high number of errors in the data that should represent category 2. 

As this example shows, the Iota concept provides a deep insight into the quality 

of a coding scheme. The following section describes how the reliability of the 

different categories is summarized to a reliability measure for the whole scale.  

3.4 Reliability on the Scale Level 

For describing the reliability of a whole scale, we introduce the new Iota Index. 

The idea behind this approach is to compare the scale-specific Assignment Error 

Matrix with the Assignment Error Matrix that implies a completely random 

assignment of the categories. Figure 5 illustrates this idea for three categories. 
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Figure 5. Illustration of the Idea for Measuring the Reliability on a Scale Level 

In Figure 5, the first matrix represents the case of perfect reliability where every 

coding unit is assigned to its true category. The second matrix in Figure 5 shows 

the case for the absence of the reliability. In this situation, every coding unit is 

assigned completely randomly to a category. Thus, the degree of reliability can 

be characterized by measuring the distance between the estimated Assignment 

Error Matrix from the matrix representing absence of reliability. In that case, the 

greater the estimated matrix differs from the matrix of perfect absence of 

reliability, the more reliable the generated data. The following equation shows 

the corresponding Iota Index which summarizes the distance into one single 

value. 

 

𝐼𝑜𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 2
𝑐 − 1

𝑐
∗ ∑ 𝑝𝑖 

∀𝑖

(∑ |𝑎𝑖𝑗 −
1

𝑐
|

∀𝑗

) [9] 

On the right side, Equation 9 contains the term for measuring the distance 

between single elements of the estimated Assignment Error Matrix from the 

corresponding single element of the matrix for random assignment (|𝑎𝑖𝑗 −
1

𝑐
|). 

These values are summarized for each column of a row and weighted with the 

categorical size of the corresponding category. The reason for weighting is 

representation: the degree of reliability of large categories should be 

represented stronger in a value for the complete scale than the degree of 

reliability for small categories. Finally, the values for each row/category are 

summarized to achieve a measure of reliability for the whole scale. The term 
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2
𝑐−1

𝑐
 is used to standardize the range of possible values to 0 and 1. Thus, a value 

of 0 implies that the Assignment Error Matrix equals the matrix for random 

assignments while a value of 1 implies that the estimated Assignment Error 

Matrix has the greatest possible distance from “randomness”. That is, the 

Assignment Error Matrix represents perfect reliability on the scale level.  

3.5 Assumption of Weak Superiority 

The elements of the Iota Concept have their roots in the Assignment Error Matrix 

and the categorical sizes. In order to produce meaningful results and to provide 

a high chance of unique estimates for a given data set, the Assignment Error 

Matrix must follow a specific structure. Figure 6 visualizes the structure that is 

created by the introduction of an additional assumption called weak superiority.  

 
Figure 6. Illustrating the Assumption of Weak Superiority  

In Figure 6, the first 𝑎𝑒𝑚 shows the situation for three categories with perfect 

reliability. The true category is recovered and no assignments to the wrong 

categories occur. The second 𝑎𝑒𝑚 is an example of a situation with absence of 

reliability. Every category is assigned completely randomly. The third and fourth 



 Berding & Pargmann 

 

21 

matrix describe situations between these two extremes. The third is in line with 

the assumption of weak superiority, the fourth is not. The assumption of weak 

superiority demands that a value on the diagonal is at least as high as the other 

values on the corresponding row. Formula 10 expresses this requirement 

 𝑎𝑖,𝑖 ≥ 𝑎𝑖,𝑗 [10] 

The reason for the introduction of this assumption is the range of possible 

categories within a coding scheme, as it is a constructive process of the users of 

content analysis. It seems clear that the different categories must be coherent 

and that they reflect different characteristics or levels of a phenomenon. In 

situations like the fourth 𝑎𝑒𝑚, coding units belonging to category 0 are more 

often assigned to category 1 than to category 0. Thus, the raters agree that these 

units represent coding units of category 1. As the existence of a category is based 

on the agreement of the users of content analysis, this would imply that category 

0 and 1 are the same. Thus, there is an incoherence in the differentiation of 

categories in the coding scheme. In this case it is logical to use only two different 

categories rather than three. 

The entailing problem can be solved with the assumption of weak superiority. It 

ensures that the different categories do not clash into each other and makes a 

distinct estimation. Before the following chapter describes how the Assignment 

Error Matrix and the categorical sizes can be estimated in order to fulfill weak 

superiority, the next section compares both concepts of Iota in order to make 

the differences between both concepts clear. 

3.6 Comparing the Iota Concepts 

The Iota Concepts of the first and the second generation share most of their 

components. However, some components are redefined and imply a different 

meaning in the second generation. To prevent confusion, the following Table 5 

compares the meaning of the different components. 
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Table 5. Comparison of the First and Second Iota Generation 

Component and Characteristics First Generation Second Generation 

Assumptions Assumptions 1 to 6 Assumptions 1 to 6 
Weak Superiority 

Alpha Reliability Probability that all raters agree 
on a category under the condition 
that that at least one rater 
assigns the category to a coding 
unit. 

Probability to assign a coding unit 
of category 𝑖 to category 𝑖. 

Alpha Error Complementary probability of the 
Alpha Reliability. 

Probability to assign a coding unit 
of category 𝑖 to another category 
as 𝑖. 

Beta Reliability Complementary probability of the 
Beta Error. 

Probability that coding units truly 
belong to any other categories as 
𝑖 are not assigned to category 𝑖. 

Beta Error Probability that at least one rater 
assigns a coding unit to a 
category (without the case that 
all raters agree on that category) 
under the condition that an Alpha 
Error occurs in all other 
categories. 

Probability that coding units truly 
belong to any other categories as 
𝑖 are assigned to category 𝑖. 

Iota Mean of the chance-corrected 
Alpha and Beta Reliability. 

Percentage of cases involving 
category 𝑖 that correctly 
represent category 𝑖.  

Iota Error Type I -/- Percentage of cases involving 
category 𝑖 that are missing in the 
data representing category 𝑖. 

Iota Error Type II -/- Percentage of cases involving 
category 𝑖 that belong to other 
categories than 𝑖. 

Diagonal of the Assignment Error 
Matrix 

Alpha Errors of the specific 
category. 

Alpha Reliability of the specific 
category. 

Other Cells in a Row of the 
Assignment Error Matrix 

Probability to assign a category to 
another category under the 
condition that an Alpha Error 
occurs. 

Probability to assign a coding unit 
of category 𝑖 to category 𝑗. 

Average Iota Mean of Iota. Index for describing 
the reliability of the complete 
scale. 

-/- 

Minimum Iota Minimum of Iota. Index for 
describing the reliability of the 
complete scale. 

-/- 

Iota Index  Distance between the estimated 
Assignment Error Matrix and an 
Assignment Error Matrix 
representing complete guessing. 
Index for describing the reliability 
of the complete scale. 
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Second generation Iota founds on the same assumptions as the first generation, 

but in addition introduces weak superiority as a new demand for the Assignment 

Error Matrix. With the help of the additional assumption, the different 

components of the concept are redefined with more clarity. For example, in the 

first generation, the Assignment Error Matrix comprises the Alpha Error and a 

complex combination of Alpha and Beta Errors. In the new version, the 

Assignment Error Matrix simply describes the probability to assign a coding unit 

of category 𝑖 to category 𝑗. Thus, the interpretation of the Assignment Error 

Matrix is clearer in the second generation.  

The clear definition of the Assignment Error Matrix leads to improved definitions 

of the other components. While in the old concept, Alpha Reliability is defined as 

the probability that all raters agree on a category under the condition that at 

least one rater assigns the category to a coding unit, the new concept just defines 

it as the probability to assign a coding unit of category 𝑖 to category 𝑖. The idea 

behind both definitions is the same, but in the new concept the definition is much 

clearer. 

The complicated conceptualization of the first generation is due to the attempt 

to derive the estimates directly from frequencies tables. For the new generation, 

an estimation algorithm, which uses techniques of Maximum Likelihood 

Estimation, is developed and applied. The following section introduces this new 

algorithm. 
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4 Estimation and Log-Likelihood 

In comparison to the first generation of the concept, the estimation of the 

relevant values in the second generation is more complicated. All measures 

described in section 3 build on the Assignment Error Matrix 𝑎𝑒𝑚 and the sizes of 

the true categories in a population 𝑝.  

The current approach for estimating these values uses an analogy to the 

estimation within latent class analysis (LCA). This provides a matrix that shows 

the average latent class probabilities for the most likely latent class membership 

for each latent class (Geiser, 2013, p. 248) that has a similar interpretation as the 

Assignment Error Matrix. In LCA, this matrix characterizes the probability to 

assign individuals to the different classes based on their true class membership. 

In the suggested reliability concept, the Assignment Error Matrix does the same. 

It characterizes the probabilities to assign the different categories to a coding 

unit based on the true category of the coding unit. In LCA, the sizes of the 

different classes have to be estimated (Andreß et al., 1997, pp. 211–218), 

similarly to the categorical sizes in the proposed concept. 

LCA is based on the assumption that the latent class membership influences the 

observable patterns on different items (Andreß et al., 1997, pp. 212–214). This 

idea can be transferred to the reliability concept as shown in Figure 7 by 

analyzing the coding patterns different raters produce. 

 

Figure 7. Analogy of the Concept to Latent Class Analysis 

In the terminology of LCA, the assignment of different categories to a coding unit 

made by the raters represents the manifest variables. For example, rater A can 

assign category 0, 1 and 2 to coding unit A. Raters B, C and D can do the same. 
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Thus, there are four manifest variables. The pattern of assignments expressed by 

these four variables/raters is influenced by the true categories of the coding units 

and the quality of the coding scheme, represented by the Assignment Error 

Matrix. In consequence, there is a link between the observable assignment 

patterns on the one hand and the Assignment Error Matrix on the other hand. In 

terms of LCA, the number of categories represents the number of classes (the 

number of levels of the latent variable). 

To sum up, the estimation of the Assignment Error Matrix can be interpreted as 

a kind of latent class analysis where the number of classes equals the number of 

categories and the number of manifest variables equals the number of raters. 

Furthermore, the number of characteristics/levels of the manifest variables 

equal the number of categories.  

The analogy to LCA allows the application of the Expectation Maximization 

Algorithm (EM Algorithm) as described in Andreß et al. (1997, pp. 218–226). The 

EM Algorithm is very useful in practical applications because it is relatively 

independent from the concrete set of starting values, offers fast computations 

within each iteration and provides a high chance of convergence. The 

disadvantages are that it does not provide standard errors and does not allow 

specifications for each kind of restrictions (Andreß et al., 1997, pp. 220–221). In 

the following, the EM Algorithm is transferred into the notation of the Iota 

Concept. Please note that the rules for identification of LCA do not apply to the 

Iota Concept. 

Expectation Stage 

The EM Algorithm starts with a randomly chosen set of values for the 𝑎𝑒𝑚 and 

the categorical sizes 𝑝. The first step is to estimate the expected frequencies of 

the different assignment patterns (E-Step). This requires a list of all unique 

observed patterns represented with 𝜋. For example, in Figure 7, three different 

patterns can be seen on the right side of the table: 𝜋1 = 1,1,1,1, 𝜋2 = 2,2,2,2, 

𝜋3 = 2,1,1,2. How often these patterns can be observed in the data is described 

with 𝑛𝜋. Referring to the table in Figure 7, 𝑛2,1,1,2 = 1. The number of coding 

units is represented with 𝑁. 

First, the conditional probabilities of the different assignment patterns are 

calculated. Equation 11 provides the conditional probability for a concrete 

pattern 𝜋 under the condition that the true category is 𝑡. 
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𝑃𝜋𝑡 = 𝑝𝑡 ∏ 𝑎𝑖(𝑡),𝑖𝜋(𝑗)

𝑟

𝑗=1

 [11] 

In Equation 11, 𝑖𝜋(𝑗) represents the index of the Assignment Error Matrix for the 

category that rater 𝑗 has assigned in a specific pattern. For example, if the pattern 

is 𝜋 = 2,1,1,2, then the third rater assigned category 1. Category 1 refers to the 

second column in the Assignment Error Matrix since in the example the possible 

categories are 0,1 and 2. Thus, 𝑖𝜋=2,1,1,2 (3) = 2. Something similar applies to 

𝑖(𝑡) which refers to the corresponding row or column in the Assignment Error 

Matrix for the true category 𝑡. 

The unconditioned probability for an assignment pattern is given by the sum over 

all true categories 𝑡 (Equation 12).  

 𝑃𝜋 = ∑ 𝑃𝜋𝑡

∀𝑡

 [12] 

With the help of these probabilities, the expected pattern frequency within each 

true category can be calculated given by Equation 13. In this equation, 𝑛𝜋 

represents the observed frequency of pattern 𝜋. 

 
�̂�𝜋𝑡 =

𝑛𝜋 ∗ 𝑃𝜋𝑡

𝑃𝜋

 [13] 

Maximization Stage 

Based on these results, the estimates are improved (M-Step). The new estimate 

for the categorical size of category 𝑡 is given by Equation 14.  

 
�̂�𝑡 =

1

𝑁
∑ �̂�𝜋𝑡

∀𝜋

 [14] 

The new entries in the Assignment Error Matrix are given by Equation 15. In this 

equation, 𝑡 represents the true categories and 𝑐 the assigned categories. 𝜙𝜋,𝑐 

describes the amount of category 𝑐 within the pattern 𝜋. For example, referring 

to Figure 7, 𝜙𝜋=1,1,1,1,𝑐=0 = 0 and 𝜙𝜋=1,1,1,1,𝑐=1 = 1. 

 
�̂�𝑡,𝑐 =

∑ (𝜙𝜋,𝑐 ∗ �̂�𝜋𝑡)∀𝜋

�̂�𝑡 ∗ 𝑁
 [15] 

The new values are now used as new starting values for the algorithm. The EM 

Algorithm ensures that the quality of the estimates increases in every iteration. 
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To characterize the quality of the estimates, the likelihood has to be calculated. 

The corresponding log-likelihood for a given 𝑎𝑒𝑚, 𝑝 and the observed 

assignment patterns 𝜋 is characterized by 

 

𝐿𝐿 = − ∑ 𝑛𝜋 ∗ log (∑ 𝑝𝑡

∀𝑡

(∏ 𝑎𝑖(𝑡),𝑖𝜋(𝑗)

𝑟

𝑗=1
))

∀𝜋

 [16] 

Conditioning Stage 

The EM Algorithm described above tries to find the most plausible estimates. In 

general, the EM Algorithm will not produce estimates of the Assignment Error 

Matrix that are in line with the assumption of weak superiority. Thus, a new stage 

is added to the algorithm above for the case that an iteration does produces an 

incorrectly structured 𝑎𝑒𝑚. 

Finding estimates of the 𝑎𝑒𝑚 that are in line with weak superiority represent an 

estimation problem with inequality constraints. To solve this problem, the 

suggested approach uses a local optimization by adapting the rows of the 𝑎𝑒𝑚 

to fulfill weak superiority and to describe the patterns belonging to that category 

as plausible as possible. 

During the conditioning stage, a row 𝑡 of an 𝑎𝑒𝑚 is interpreted as a multinomial 

distribution with the probabilities 𝑚𝑖. The number of observed categories within 

a true category is given by the corresponding rows of the 𝑎𝑒𝑚 from the 

maximization stage. These are derived from Equation 15. Thus, the log-likelihood 

can be described by Equation 17. 

 
𝐿𝐿𝑡 = − ∑ �̂�𝑡,𝑐

𝑐

𝑖=1

log (𝑚𝑖) [17] 

During the conditioning stage, the values for 𝑚𝑖 are varied to maximize 

likelihood. For this aim, the gradient of 𝐿𝐿𝑡 is used. The entry 𝑖 of the gradient is 

given by Equation 18. 

 
𝑔𝑟𝑎𝑑(𝐿𝐿𝑡)𝑖 =

�̂�𝑡,𝑖

𝑚𝑖

−
�̂�𝑡,𝑐−1

1 − ∑ 𝑚𝑗
𝑐−1
𝑗=1

 [18] 

Please note that 𝑖 ranges from 1 to 𝑐 − 1 since the sum of all probabilities must 

equal one, reducing the dimensionality of the optimization problem. With the 
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help of the gradient and the log-likelihood, the following algorithm produces 

estimates for a row of the 𝑎𝑒𝑚 that are in line with weak superiority. 

1) Chose the row 𝑡 of the 𝑎𝑒𝑚 that is supposed to be estimated. 

2) Reorder the columns of the row so that column 𝑡 is the first column. 

3) Reorder the rest of the columns so that the column with the smallest 

value �̂�𝑡,𝑖 is the last column. The reordered values form the observations 

for which the values of 𝑚𝑖 should be optimized. 

4) Choose a set of start values for 𝑚 that is in line with weak superiority 

(𝑚1 ≥  𝑚𝑗 ∀𝑗 ≠ 1).  

5) Calculate the log-likelihood with Equation 17 for 𝑚 based on the 

observations. 

6) Calculate the gradient of log-likelihood for 𝑚 with Equation 18. 

7) If the gradient for 𝑚𝑖 is greater than zero, reduce 𝑚𝑖 by 𝛿1. 

If the gradient for 𝑚𝑖 is smaller than zero, increase 𝑚𝑖 by 𝛿1. 

if the gradient for 𝑚𝑖 equals zero, do not change 𝑚𝑖. 

8) Check the new value for 𝑚1. 

If 𝑚1 <
1

𝑐
, set 𝑚1 =

1

𝑐
. 

If 𝑚1 > 1, 𝑠𝑒𝑡 𝑚1 = 1. 

9) Now check the other probabilities 

If 𝑚𝑖 > 𝑚1, set 𝑚𝑖 = 𝑚1. 

If 𝑚𝑖 < 0, set 𝑚𝑖 = 0. 

10) Set 𝑚𝑐 = 1 − ∑ 𝑚𝑗
𝑐−1
𝑗=1  

11) Calculate the log-likelihood with Equation 17 for the new 𝑚 based 

on the observations. 

12) Compare both values for the log-likelihood. If the log-likelihood for 

the new values of 𝑚 only slightly increases compared to log-likelihood for 

the old values, go to step 13. In the other case restart the algorithm with 

step 5 and the new values for 𝑚. 

13) Reorder the columns of 𝑚. Set the last column to the original 

column from step 3. 

14) Reorder the columns for 𝑚. Set column 1 to column 𝑡 (see step 2). 

15) Use 𝑚 as new values in the 𝑎𝑒𝑚 for row 𝑡. 

The reorder of the columns is necessary to provide the same algorithm for all 

rows of an 𝑎𝑒𝑚. That is, for all true categories. Step 3 is crucial since the 
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suggested algorithm explicitly investigates only 𝑐 − 1 entries. By assigning the 

column with the smallest value to the last column, the algorithm indirectly 

proves that the result of the estimation is in line with weak superiority. The 

following section describes the design of a simulation study to investigate the 

quality of the estimation algorithm and to provide insights into the statistical 

properties of the new concept.  
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5 Simulation Study I 

5.1 Hypotheses and Design of Simulation Study I 

To prove the new concept and its estimation algorithm, a simulation study is 

performed. This study concentrates on the quality of the estimates on the one 

hand and on the other hand on the ability to characterize the reliability of the 

complete scale. First, the following basic hypotheses about the estimates will be 

investigated: 

Categorical Level 

H1:  Increasing the sample size leads to more accurate estimates for the 

Assignment Error Matrix and the categorical sizes. 

H2:  Increasing the number of raters leads to more accurate estimates of the 

Assignment Error Matrix and the categorical sizes. 

H3:  The number of categories decreases the accuracy of the estimates. 

H4:  The kind of distribution of categories in the population does not influence 

the estimates of the Assignment Error Matrix and the categorical sizes. 

Scale Level 

H5:  Increasing the sample size leads to more accurate estimates for the Iota 

Index. 

H6:  Increasing the number of raters leads to more accurate estimates for the 

Iota Index. 

H7:  The number of categories decreases the accuracy of the Iota Index. 

H8:  The kind of distribution of categories in the population does not influence 

the estimates for the Iota Index. 

As more raters and a greater sample size provide more information, the accuracy 

of the estimates should increase. A higher number of categories implies more 

parameters to be estimated, leading to a decreasing accuracy for a given sample 

size and a given number of raters. In contrast, the kind of distribution of the 

categories in a population should ideally not influence the accuracy. In particular 

the independence of the kind of distribution would be a great benefit for users 

as it would ensure more valid conclusions in practical applications, since the true 

distribution is seldomly known. Figure 8 illustrates the design of the study. 
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Figure 8. Design of Simulation Study I. 

The simulation begins with the generation of the true parameters. In a first step, 

this implies the selection of the number of categories of a coding scheme. The 

number of categories in this simulation varies between two and five. The specific 

number is determined by chance. After this step, the true parameters for the 

categorial sizes and the Assignment Error Matrix have to be chosen. The 

categorical sizes represent the probability of a multinomial distribution, which is 

randomly chosen with each probability greater than zero. Similarly, the true 

parameters of the Assignment Error Matrix are randomly chosen but it is ensured 

that the matrix is in line with weak superiority in every case. Ten percent of all 

parameter sets refer to an Assignment Error Matrix representing the absence or 

perfect reliability. 

After modeling the coding scheme, a sample of true data is generated. The 

corresponding sample size can vary between 20 and 1,500 coding units. Again, 

the specific size is selected by chance.  

In the next step, the number of raters is determined by chance. The number can 

vary between two and five. Each rater assigns a category to every coding unit. 

The probability for assigning the categories to a coding unit is determined by the 

true Assignment Error Matrix. This process results in a table where every rater 

assigned a category to every coding unit. This table forms the observed data. 

The observed data is used for the calculation of Iota of the second generation 

and its components, resulting in estimates for the Assignment Error Matrix and 
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the categorical sizes. Now it is possible to compare the estimated with the true 

parameters and to analyze the influence of the number of raters, number of 

categories and sample size on the accuracy of the estimates. 

In addition, the true distribution is characterized by the Herfindahl Index. Thus, 

it can be investigated, what influence the shape of the distribution has on the 

estimates. 

In this simulation study, 11,520 different sets of Assignment Error Matrices and 

categorical sizes are generated. For every set of true parameters, a sample of 

four different numbers of raters is drawn. For every number of raters, the 

simulation chooses ten different sample sizes. Thus, at the end, 460,800 cases 

are available to investigate the properties of the Iota Concept of the second 

generation  

Since the generated data always refers to one of the 11,520 sets of true 

parameters, the data has a clustered structure. The sets of true parameters form 

level 1 and the nested coding processes form level 2. Level 3 is made up of the 

parameters of the Assignment Error Matrix, the categorical sizes, the Alpha 

Elements, Beta Elements and Iota within each coding process. 

To take this structure into account in the evaluation of accuracy, the following 

analyses are done in R (R Core Team, 2021) with help of the package estimatr 

(Blair et al., 2022), which allows for cluster adjusted regression. Furthermore, the 

software Mplus 8.8 (Muthén Linda & Muthén, 2022) is used in combination with 

R (Hallquist & Wiley, 2018), which allows for an additional and even deeper 

analysis of these data structures by including the framework of structural 

equation modeling (SEM) and by expending the number of cluster levels up to 

three. Heck and Thomas (2020, pp. 33–35) summarize the advantages of 

multilevel modeling: the possibility to model variables on their correct level, 

allowing for a more complete specification of errors and providing more accurate 

standard errors. In consequence, ignoring the clustered structure generally leads 

to smaller standard errors, in turn leading to a higher chance of a wrongful 

confirmation of the research hypotheses although in truth, they are false (Heck 

& Thomas, 2020, p. 33).  

In the following analysis, no centering is applied since the number of raters, the 

number of categories, the concentration, the sample size and the true reliability 

are scales with a meaningful zero point. In these cases, centering is not necessary 
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(Heck & Thomas, 2020, p. 74). The analysis applies Bayes Estimation since it 

provides a lot of advantages. These include more realistic predictions, the 

possibility of modelling more complex structures and avoiding estimation 

problems (Wang & Wang, 2020, pp. 17–18). To evaluate the global fit, the 

Posterior Predictive P-value (PPP) can be used. The PPP describes the amount in 

which the model-generated data are more plausible than the empirical data. A 

PPP of .500 means that the model-generated data is equally plausible as the 

observed data (Zyphur & Oswald, 2015, p. 402), pointing to an excellent fit (Wang 

& Wang, 2020, p. 26). A value of at least .100 (Cain & Zhang, 2019, p. 48) or of at 

least .05 (Wang & Wang, 2020, p. 26) indicates an acceptable level of global fit. 

The PPP is advantageous for small samples but tends to over-reject a “good” 

model in increased sample sizes (N > 1,000), leading to the rejection of a “good” 

model due to only small misspecifications. Thus, Hoofs et al. (2018) suggest the 

Bayesian root mean square error of approximation to solve this situation. 

However, such alternative fit indices are currently not available for the present 

kind of fitted model in this study. All simulations in this study were performed 

using the High Performance Computing Cluster "Hummel" at the University of 

Hamburg. The following section presents the results. 

5.2 Results of Simulation Study I 

5.2.1 Data Description and Preparation 

The simulation generated 11,472 true parameter sets (Cluster Level 1) and 

simulated about 39.50 coding processes per parameter set, resulting in a total of 

453,140 coding processes (Cluster Level 2). In every coding process, the 

parameters for the Assignment Error Matrix and the categorical sizes are 

estimated. This resulted in 7,743,512 single parameter estimates (Cluster Level 

3). 

To provide first insights into the quality of the generated data, Figure 9 shows 

the scatter plot for the estimated and true Iota Index. The Iota Index is used since 

it is a reliability measure for the complete scale and depends on both the 

parameters of the Assignment Error Matrix and the categorical sizes. Thus, 

abnormalities in this measure have a high chance to reflect problems in the 

estimation process. 
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Figure 9. Scatter Plot for the Iota Index  

Figure 9 shows that the estimates become more accurate the higher the true Iota 

Index is. In particular, the points deviate nearly symmetrically from the true 

values. However, on the extreme poles of the scale, a high number of outliners 

can be identified. This suggests that the current implementation of parameter 

estimation is problematic for the extreme cases, or the cases of perfect absence 

of reliability and for perfect reliability. In order to ensure stable results, these 

extreme situations are omitted from further analyses (true Iota Index equals 1 or 

0). After omitting these cases, the data consist of 10,514 true parameter sets 

(Cluster Level 1) with about 39.50 coding processes per set, resulting in 415,291 

simulated coding processes (Cluster Level 2). Altogether, 7,093,054 parameters 

are estimated. The following section analyses the accuracy of the primary 

parameters. 

5.2.2 Accuracy of the Estimated Assignment Error Matrix and Categorical Sizes 

During the estimation, about 1.1% of the estimated parameter sets showed 

boundary values. Thus, the risk of generating estimates with categorical sizes is 



Iota Reliability Concept of the Second Generation  

 

36 

less than 1%. This is very low and indicates that the estimates are plausible values 

in terms of content. 

Table 6. Descriptive Statistics of Estimation Errors 

 

Total 
Error 

Deviation between 
True and 

Estimated 
Parameter 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 1 10,514 10,514 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 2 415,291 415,291 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 3 -/- 7,093,054 

Minimum 0.001321 .000000 
25% Percentile 0.644948 .021500 

Median 1.377410 .054250 

Mean 1.405852 .082310 

75% Percentile 2.065311 .114780 
95% Percentile 2.914430 .252408 

Maximum 5.885020 .969520 

Standard 
Deviation 

0.891520 .086183 

To characterize the accuracy of the estimates, the total error is calculated. In this 

analysis, the total error is given as the sum of the pairwise distance between the 

true and the corresponding estimated parameter. Table 1 shows basic statistics. 

On average, the total error of estimation is about 𝑀 = 1.405852 with a standard 

deviation of 𝑆𝐷 = 0.89152. To provide deeper insight into the total error, Table 

7 presents the results of a hierarchical regression analysis. 
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Table 7. Influences on the Total Error of Estimation 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R² .0176 R² .0214 R² .0252 R² .0339 R² .0424 

b β b β b β b β b β 

True Reliability 
(True Iota Index) 

-0.112 -0.133 -0.117 -0.139 -0.129 -0.153 -0.129 -0.153 -0.129 -0.153 

Concentration   0.045 0.061 0.029 0.040 0.030 0.040 0.030 0.041 

Number of 
Categories 

    -0.006 -0.068 -0.006 -0.068 -0.006 -0.068 

Number of Raters       -0.007 -0.093 -0.007 -0.093 

Sample Size         0.000 -0.092 

Notes: All coefficients are significant at 0.1%. 
Cluster variable: true parameter set (Level 1). 

According to Table 7, the variance in the total sum of errors can be explained up 

to about 65%. The strongest impact comes from the number of categories, 

explaining about 44.89% of the total variance. This implies that the higher the 

number of categories, the higher the total estimation error. The variable with the 

second strongest impact is the level of true reliability measured by the true Iota 

Index, accounting for about 12.70% of the total variance. This suggests that the 

higher the true reliability, the more accurate the estimates, implying that the 

estimation algorithm produces more accurate results for situations with a high 

true reliability. This is plausible as the variance of ratings is higher the more the 

true reliability converges to situations of perfect absence of reliability. The shape 

of distribution measured by the Herfindahl Index is less important and explains 

only about 2.92% of the total variance; the more the values concentrate on a 

single category, the less accurate the estimates. In addition, the number of raters 

and the sample size have a positive impact on the accuracy, so the higher the 

sample size and the more raters are involved in rating the coding units, the more 

accurate the results. The number of raters explains about 2.38% and the sample 

size 2.29% of the variance of the total error. Thus, the impact of the number of 

categories is about 4.7 times higher than the effect of the number of raters and 

about 4.8 times higher than the effect of the sample size.  

Besides the total error, the deviation of single parameters from their true value 

is important as well, since the Assignment Error Matrix and the categorical sizes 

can be directly used to evaluate a coding scheme. Table 6 provides the basic 

statistics. On average, the estimated and the true parameters deviate by 8 

percentage points, implying that the estimated value is about 8 percentage 

points higher or lower than the true counterpart. With a certainty of 75%, the 
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deviation is not exceeding about 11 percentage points and with a certainty of 

95%, the deviation is less than 25 percentage points.  

Table 8. Influences on the Deviation Between True and Estimated Parameters 

 Model 1 Model 2 Model 3 Model 4 Model 5 

R² .0176 R² .0214 R² .0252 R² .0339 R² .04237 

b β b β b β b β b β 

True Reliability 
(True Iota Index) 

-0.112 -0.133 -0.117 -0.139 -0.129 -0.153 -0.129 -0.153 -0.129 -0.153 

Concentration   0.045 0.061 0.029 0.040 0.03 0.04 0.030 0.041 

Number of 
Categories 

    -0.006 -0.068 -0.006 -0.068 -0.006 -0.068 

Number of Raters       -0.007 -0.093 -0.007 -0.093 

Sample Size         0.000 -0.092 

Notes: All coefficients are significant at the 0.5% level. 
Cluster variable: coding processes (Level 2). 

Table 8 provides insight into factors influencing the deviation for the 

corresponding pairs of true and estimated parameters. In general, the explained 

variance of all variables is quite low with a 𝑅² less 5%. Again, the deviation is 

stronger if the true reliability is low. Except for the concentration of the 

categories, all other variables contribute to more accurate estimates. The higher 

the number of categories, the more raters judge the coding units and the greater 

the sample size, the more accurate the single parameters. The effects of the 

number of raters and the sample size have an equal relevance. 

In order to take the clustered structure into account more clearly, a three level 

structural equation model is fitted to the data by using Mplus 8.8 and Bayes 

Estimation (Muthén Linda & Muthén, 2022). Figure 10 shows these results. 
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Figure 10. Summary of Multilevel Regression for Deviation of Single Parameters 

On the level of true parameters sets, the deviation represents the mean 

deviation within these clusters and the variance refers to the differences 

between the different clusters. Here, the true Iota Index, the number of 

categories and the concentration of the categories in the true distribution 

explain about 58% of the variance in the average deviation between true and 

estimated parameters. On this level, the true reliability is the strongest predictor. 

That is, the higher the true reliability of a coding scheme, the more accurate the 

parameter’s estimates. The number of categories again has a similar influence 

while a higher concentration on a single category implies less accurate results. 

This effect, however, is quite small. 

On the level of coding processes, deviation refers to the mean deviation within a 

coding process and the variance refers to differences in the coding processes 

belonging to a specific set of true parameters. Here, the number of categories 

and the sample size account for roughly 16% of the corresponding variance in 

the mean deviation between true and estimated parameters. Both variables 

have a similar effect on the deviation and a similar effect size. The more raters 

are involved in the data generation and the greater the sample size, the more 

accurate the results.  
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On the last level, deviation refers to the deviation between each pair of true and 

estimated parameter of the Assignment Error Matrix and categorical sizes. The 

variance refers to all parameters within a coding process. Since on this level, 

there are no variables to predict the deviation, 𝑅² is zero. In this kind of model, 

the deviation between a concrete pair of true and estimated parameters is 

estimated with the help of the corresponding cluster means (Geiser, 2013, 

p. 215), leading to the regression function shown in Figure 10. The total 𝑅² of 

.0243 indicates that about 2.5% of the variance’s deviation between the true and 

estimated parameters can be explained by the fitted model and the derived 

regression function, which is quite low. 

5.2.3 Accuracy of the Derived Reliability Measures 

The Assignment Error Matrix and the categorical sizes are the foundation of the 

Alpha Elements, Beta Elements, Iota and the Iota Index. Thus, the accuracy of the 

estimated Assignment Error Matrix and the categorical sizes have an impact on 

the accuracy of the derived measures. Table 9 provides a first overview. 

Table 9. Descriptive Statistics of Estimation Errors for Alpha, Beta, Iota and the 
Iota Index 

 Deviation  
Alpha Reliability Beta Reliability Deviation Iota 

Deviation  
Iota Index 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 1 10,514 10,514 10,514 10,514 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 2 415,291 415,291 415,291 415,291 

𝑁𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 3 1,458,426 1,458,426 1,458,426 -/- 

Minimum .000000 .000000 .000000 .00000 

25% Percentile .019000 .008578 .021070 .01136 

Median .045450 .030686 .052030 .02621 

Mean .068370 .049921 .072630 .03853 

75% Percentile .091350 .067043 .103710 .05189 

95% Percentile .210172 .160928 .210326 .11669 

Maximum .767210 1.000000* .914460 .77883 

SD .074152 .070058 .068962 .04027 

Note. * The maximum deviation of 1 is a result of the estimation algorithm in extreme 
situations. If the Alpha Reliability of a category is perfect (the cell in the Assignment Error 
Matrix equals 1) the condition for the Beta Error equals zero and is not defined. In these 
cases, Beta Error is set to zero, implying a Beta Reliability of one. If the estimation results in 
values for the Alpha Reliability unequal 1, the Beta Error is estimated conventionally. Thus, 
these cases are outliners. 

With a certainty of 75% the estimated values for Alpha Reliability do not differ 

more than 9 percentage point from their true values. The maximum deviation is 

about 21 percentage points with a certainty of 95%. Focusing on Beta Reliability, 
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the estimations are more accurate since the values do not differ more than 

16 percentage points. For Iota, similar results occur as for Alpha Reliability. 

Switching to the scale level, the estimated values for the Iota Index do not differ 

more than .12 from their true values. In the following, regression analyses are 

presented to provide insight into the influencing variables of the reliability 

measures. Table 10 presents these results for Alpha Reliability. 

Table 10. Influences on the Deviation Between True and Estimated Alpha 
Reliability 

 Model 1 Model 2 Model 3 Model 4 

R² .0019 R² .0025 R² .0203 R² .0376 

b β b β b β b β 

Concentration 0.024 0.044 0.029 0.052 0.030 0.053 0.030 0.053 

Number of Categories   0.002 0.024 0.002 0.024 0.002 0.024 

Number of Raters     -0.009 -0.134 -0.009 -0.134 

Sample Size       0.000 -0.132 

Notes: All coefficients are significant at the 0.1% level. 

All included variables account for about 3.8% of the total variance, which is quite 

a low number. The most influencing variables are the number of raters and the 

sample size. The more raters judge coding units and the greater the sample size, 

the more accurate the estimates. The number of categories and the 

concentration of the true distribution practically do not influence the estimation 

results. Similar results occur for the Beta Reliability as Table 11 shows. 

Table 11. Influences on the Deviation Between True and Estimated Beta 
Reliability 

 Model 1 Model 2 Model 3 Model 4 

R² .0008 R² .0018 R² .0076 R² .0157 

b β b β b β b β 

Concentration -0.015 -0.028 -0.009 -0.017 -0.009 -0.016 -0.009 -0.016 

Number of Categories   0.002 0.034 0.002 0.033 0.002 0.033 

Number of Raters     -0.005 -0.076 -0.005 -0.076 

Sample Size       0.000 -0.090 

Notes: All coefficients are significant at the 0.1% level. 

Concentrating on Iota, Table 12 implies that the considered variables explain only 

about 3.6% of the total variance. Again, the number of raters and the sample size 

have a positive impact on the accuracy. In contrast to Alpha and Beta, the 

number of categories shows no significant influence on the deviation between 

the estimates and true values of Iota. The concentration on a single category in 

the true distribution does practically not influence the estimation.  
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Table 12. Influences on the Deviation between True and Estimated Iota 

 Model 1 Model 2 Model 3 Model 4 

R² .0024 R² .0024 R² .0195 R² .0357 

b β b β b β b β 

Concentration 0.025 0.049 0.025 0.049 0.026 0.050 0.026 0.050 

Number of Categories   0.00 0.00 0.000 0.001 0.000 0.000 

Number of Raters     -0.008 -0.131 -0.008 -0.131 

Sample Size       0.000 -0.127 

Notes: All coefficients are significant at the 0.1% level except Number of Categories 

Switching to the scale level, Table 13 reports the results for the Iota Index. Now, 

all variables explain about 11.5% of the total variance. The concentration on a 

single category in the true distribution of the categories explains less than 0.1% 

of the variance. Thus, it is practically not relevant. Similarly, the number of 

categories explains about 0.39% of the variance, which is very low. In contrast, 

the number of raters explains about 5.94% and the sample size about 5.14% of 

the total variance. The more raters are involved in the data generation and the 

greater the sample size, the more accurate the estimates.  

Table 13. Influences on the Deviation Between True and Estimated Iota Index 

 Model 1 Model 2 Model 3 Model 4 

R² .0005 R² .0039 R² .0633 R² .1147 

b β b β b β b β 

Concentration -0.006 -0.023 -0.011 -0.043 -0.011 -0.041 -0.010 -0.041 

Number of Categories   -0.002 -0.061 -0.002 -0.062 -0.002 -0.062 

Number of Raters     -0.009 -0.244 -0.009 -0.244 

Sample Size       0.000 -0.227 

Notes: All coefficients are significant at the 0.1% level. 

Since 𝑅² for the Iota Index is quite high, a new function was fitted to the data to 

provide information for planning studies. Figure 11 presents the results for a 

different number of raters together with the 95% prediction interval.  
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Figure 11. Relationship Between the Deviation of the Iota Index and the Number 
of Raters and Sample Size. 

The function plotted in Figure 11 is given by Equation 19. An increase in the 

sample size leads to more accurate values, however the effect of the sample size 

is decreasing with increase 𝑛. 

𝑑𝐼𝑜𝑡𝑎 𝐼𝑛𝑑𝑒𝑥(𝑟, 𝑛) = − ln(0.02965969) 𝑟 − ln(0.01309752) 𝑛 + 0.15730986, 𝑅2 = .1423 [19] 

Table 14 shows the necessary sample size to ensure that the Iota Index does not 

deviate more than 0.10 from its true value with a certainty of 95%. 

Table 14. Necessary Sample Size to Ensure a Maximum Deviation of Iota Index l 
of a Maximum of 0.1 

Number of Raters 
Maximum Deviation of 0.1 with a  

Certainty of 95% for the Iota Index 

2 4,388 

3 1,752 

4 913 

5 551 

In order to take the clustered structure of the data into account in more detail, a 

multilevel analysis is performed with Mplus 8.8 and Bayes Estimation. This 

analysis includes all measures simultaneously. Figure 12 presents the results. 
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Figure 12. Summary of Multilevel Regression for the Deviation of Reliability 
Measures 

On the first level, the deviation represents the mean deviation within the true 

set of parameters. The variance on this level can be interpreted as a variance in 

the mean deviation between the different sets of true parameters. Here, a higher 

true reliability implies more accurate estimates for all measures except for the 

Beta Reliability. A higher number of categories leads to more accurate results for 

Iota and the Iota Index but implies less accurate results for the Alpha and Beta 

Reliability. A higher concentration of single categories in the true distribution 

implies more accurate results for Beta and the Iota Index but not for Alpha and 

Iota. The mean deviation of the true parameter sets can best be explained for 

Iota with 𝑅² = .502. Differences in the mean deviation of Beta Reliability can be 

explained on this level only with 𝑅² = .051. 

On the top level, the mean deviation between Alpha Reliability, Beta Reliability 

and Iota shows weak to moderate correlations (Cohen, 1988, pp. 79–80). That is, 

higher deviations on one measure are associated with higher deviations on the 

other measures. In contrast, all three measures are not or weakly correlated 

(Cohen, 1988, pp. 79–80) with the mean deviation of the Iota Index.  

On the level of a single coding process, the deviation represents the mean 

deviation for the coding processes belonging to specific true parameters. The 
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variance on this level characterizes the variance between the corresponding 

coding processes. Here, a higher number of raters and a greater sample size lead 

to more accurate results for every measure. Both variables explain about 8% of 

the variance for the Beta Reliability, compared to 19% for the Alpha Reliability. 

On this level, all measures except Alpha and Beta reliability show a moderate to 

strong correlation (Cohen, 1988, pp. 79–80). That is, a greater deviation on one 

measure is associated with a greater deviation on the other measures. Only for 

the correlation between Alpha and Beta this correlation is weak to moderate 

(Cohen, 1988, pp. 79–80). 

Focusing on the individual parameters within a coding process, the 𝑅² is zero in 

every case since there are no explanatory variables included. On this level, the 

deviation represents the mean deviation between the parameters belonging to 

a coding process. The variance can be interpreted as the variance of these mean 

values. On this level, higher deviations for Alpha and Beta lead to higher 

deviations for Iota, which is plausible since Iota can be described as a summary 

of Alpha and Beta Reliability. In contrast, the deviations of Alpha and Beta do not 

correlate on this level as they are independent. 

Taking all levels together, the model is able to explain about 3% of the variance 

in the deviation of Beta Reliability, compared to 15% for the Iota Index. Equations 

20 to 23 describe this relationship.  

𝑑𝐴𝑙𝑝ℎ𝑎 = 0,13686617 − 0,07898855𝐼𝑇 + 0,03052350𝐻 + 0,00067391𝑛𝑐 − 0,00915591𝑛𝑟 − 0,00002355𝑛𝑠 [20] 

𝑑𝐵𝑒𝑡𝑎 = 0,03596601 + 0,03908057𝐼𝑇 − 0,01145610𝐻 + 0,00807707𝑛𝑐 − 0,00485815𝑛𝑟 − 0,00001507𝑛𝑠 [21] 

𝑑𝐼𝑜𝑡𝑎 = 0,17880818 − 0,15278928𝐼𝑇 + 0,02100430𝐻 − 0,00386700𝑛𝑐 − 0,00831589𝑛𝑟 − 0,00002165𝑛𝑠 [22] 

𝑑𝐼𝑜𝑡𝑎 𝐼𝑛𝑑𝑒𝑥 = 0,12037919 − 0,05926049𝐼𝑇 − 0,00949960𝐻 − 0,00397315𝑛𝑐 − 0,00885201𝑛𝑟 − 0,00002169𝑛𝑠 [23] 

Since the deviation depends substantially on the true level of reliability, the 

following Figure 13 shows the accuracy for different levels of certainty. Specific 

values can be found in Appendix A.  
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Figure 13. Certainty Levels of Accuracy for Different Levels of True Reliability 

For all estimates except Iota, the deviation of true and estimated values does not 

exceed 10 percentage points with a certainty of 50% (Median). For Iota, this 

applies from a true reliability of about 0.15. Focusing on the 90% interval, the 

primary parameters do not exceed 10 percentage points from a true reliability of 

0.75, Alpha from 0.8, Iota from 0.6 and the Iota Index from 0.3, respectively. Beta 

is below 0.1422 for all levels of true reliability with a certainty of 90%. From a 

level of true reliability of about 0.65, high deviations occur for Beta in 99% of 

intervals. These extreme values are due to estimation problems for rare, extreme 

values in which the corresponding true Alpha Reliability is perfect and the 

denominator of Beta not defined (see note in Table 9 for an explanation).  

The reason for the primary parameters’ broad confidence intervals in the range 

of low true reliability (0-0.25) can be traced back to the categorical sizes. In cases 

where the Assignment Error Matrix is close to perfect absence of reliability, 

raters assign categories to coding units randomly regardless of their true 

category. This implies that the data of assigned categories shows an equal 

distribution of categorical sizes. The true categorical sizes do not matter as a 

result of random assignments. Thus, high deviations between the estimated and 
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true categorical sizes have to be expected. The following section summarizes the 

results of the first simulation study. 

5.3 Summary of Simulation Study I 

Categorical Level 

The first simulation study aims to provide insights into basic properties of the 

implemented estimation algorithm. Referring to the four hypotheses from 

section 5.1, two hypotheses can be confirmed. The greater the sample size (H1) 

and the more raters are involved in the data generation (H2), the more accurate 

the parameter estimates are.  

The influence of the number of categories is more complicated. On the one hand, 

more categories are associated with a higher total estimation error. On the other 

hand, the single parameters are not negatively affected by a higher number of 

categories. Thus, hypothesis (H3) cannot be confirmed completely. Since the 

application of the Iota Concept relies on the individual parameters of the 

Assignment Error Matrix and the categorical sizes, it is more plausible to assume 

that the number of categories does not negatively affect the estimates. That is, 

a higher number of categories does not lead to less accurately estimated 

parameters. 

According to hypothesis (H4), an influence of the individual categories’ 

concentration on the true distribution could be identified. A higher 

concentration is associated with a higher deviation from the true parameters. 

This implies that the estimation algorithm performs best if the categories of a 

scale are equally distributed. However, the influence of the concentration is 

small. From a very strict point of view, hypothesis (H4) cannot be confirmed. 

From a more practical point of view, the influence of the concentration is less 

important due to low values for 𝑅².  

These results continue for the reliability measures derived from the estimated 

parameters. The higher the sample size and the more raters are involved, the 

more accurate are the Alpha Reliability, Beta Reliability and Iota. A higher 

number of categories contributes to more accurate results for Iota and the Iota 

Index but decreases the accuracy for Alpha and Beta Reliability. In both cases, 

the negative impact of a higher number of categories is quite low because of low 

standardized regression coefficients (Alpha Reliability) or a small 𝑅² (Beta 

Reliability). The degree of concentration in the true distribution affects most 
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notably the Alpha Reliability with a higher concentration, leading to more 

inaccurate estimates.  

Scale Level 

Focusing on the scale level, (H5) and (H6) can be confirmed. The greater the 

sample size and the more raters are involved in rating coding units, the more 

accurate the estimate for the Iota Index. A higher number of categories is 

associated with a smaller deviation between true and estimated values, 

contradicting (H7). Finally, the estimates are more precise if the true distribution 

of the categories concentrates on single categories. From a strict point of view, 

hypothesis (H8) cannot be confirmed. The effect is small compared to the other 

influencing variables on the first level. Again, from a more practical point of view, 

the influence of the concentration is less important. 

Absolute Values of Accuracy 

Besides the factors themselves that influence accuracy, the absolute value of 

accuracy itself is equally important when judging the quality of an estimation 

algorithm. Referring to the central tendency (median) in Figure 13, the estimates 

do not deviate more than 5 percentage points for both the Alpha Reliability and 

Beta Reliability and 0.042 for the Iota Index. For Iota and the primary parameters, 

higher deviations have to be expected if the true reliability is quite low (lower 

than 0.25). Taking the uncertainty of the estimation into account, the 95% 

confidence interval is rather broad for all parameters except the Beta Reliability 

and the Iota index. Thus, in the central tendency, the estimation algorithm is 

quite accurate. However, further research should aim to reduce the uncertainty 

in parameter estimation. In practice, it matters if a coding unit is assigned to the 

right category in 10% or in 35% of cases. On the scale level, the situation is less 

problematic. With a certainty of 95%, the values for the Iota Index differ not 

more than .1 if the true reliability is at least .1. Thus, the values on the scale level 

are quite accurate and robust. After analyzing the basic properties of the new 

estimation algorithm, the following section investigates its predictive power. 
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6 Simulation Study II 

6.1 Research Questions and Design of Simulation Study II 

The second simulation study investigates how well the new concept is able to 

predict consequences arising from different degrees of reliability on subsequent 

analyses. The study addresses the following research questions: 

RQ1 How strong does the Iota Index predict the deviation between true and 

estimated sample association/correlation for nominal/ordinal data to be? 

RQ2 How strong does the Iota Index predict Type I and Type II Errors in accepting 

and rejecting hypothesis of association/correlation to be? 

RQ3 How strong does the Iota Index predict the correct effect size of an 

association/correlation to be? 

RQ4 How does the Iota Index perform in predicting consequences in comparison 

to the old Iota Concept and other measures of inter-rater reliability? 

RQ5 What are meaningful cut-off values for reliability in practical situations? 

To generate answers to these questions, a simulation study is performed. All 

simulations in this study were performed using the High-Performance Computing 

Cluster "Hummel" at the University of Hamburg. Figure 14 shows the design of 

the study.  
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Figure 14. Design of Simulation Study II 
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Step 1: Generating Sets of True Parameters  

In the first step the true values are generated for both the independent and the 

dependent variable. That is, for both variables an Assignment Error Matrix and 

categorical sizes are chosen randomly. This assumes that the number of 

categories is identical. The simulation ensures that the Assignment Error Matrix 

is in line with weak superiority. The number of categories can vary between two 

and five. 

As the aim of this simulation study is to understand how different degrees of 

reliability are connected with the quality of subsequent analyses, the sample of 

true parameters for the Assignment Error Matrix has to ensure that the complete 

range of reliability is captured. For achieving this, a stratified random sampling is 

applied. Here, the range between 1/𝑐 and 1 is divided into 20 equidistant parts. 

The first part represents a reliability around zero and the 20th part represents a 

nearly perfect reliability. The part is chosen randomly in the moment where the 

simulation generates the true parameter set. Within the selected part, a 

concrete value is chosen randomly. The concrete value is used as the mean of 

normal distribution. The corresponding standard deviation is set to half the 

minimum distance of this value to 1 or 1/𝑐. With help of this normal distribution, 

𝑐 probabilities are generated which form the diagonal elements of the 

Assignment Error Matrix. The other probabilities are chosen randomly. In every 

case, the assumption of weak superiority is fulfilled.  

Parts associated with a higher degree of reliability have a higher chance than 

parts associated with a lower reliability (the highest has a chance twice as high 

as the lowest). In order to allow the derivation of cut-off values, the analysis 

made must be as accurate as possible at the higher end of the reliability scale. 

The probabilities for the categorical sizes are drawn with simple random 

sampling. 

Additionally, in this first step, the kind and strength of the association/correlation 

between both variables are modeled. In the case of nominal data, the function 

𝑓(𝑥) assigns every category of the independent variable to a category of the 

dependent variable. This allocation is done randomly to ensure that a category 

of the independent variable corresponds with a category of the dependent 

variable at all times. Also, every category can only correspond with one other in 

both directions. For ordinal data, 𝑓(𝑥) models a simple linear relationship that 
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ensures that the minimal and maximal categories of both variables correspond 

with each other.  

The strength of association/correlation is modeled based on the work of Cohen 

(1988) and concentrates on the range relevant for practice: “practically no 

association/correlation”, “practically weak association/correlation”, “practically 

medium association/correlation” and lastly “practically strong 

association/correlation”. Every class is assigned a range of probabilities ranging 

from 0.0 to lower 0.1 for no practical relationship, from 0.1 to lower 0.3 for a 

weak practical relationship, from 0.3 to 0.5 for a practical medium relationship 

and from 0.5 to 0.7 for a strong relationship. These probabilities are inspired by 

the work of Cohen (1988) who suggests that relationships expressed with a value 

of at least 0.1 should be interpreted as a weak but practical relevant relationship, 

with at least 0.3 as a medium and with at least 0.5 and above as a strong 

relationship in the social sciences. Although Cohen (1988, 79-81,224-225) refers 

to Pearson’s Correlation and 𝑤 and not to probabilities, these values provide a 

guide for modeling realistic strength.  

As the first step, one class of strength is chosen randomly. In the next step, a 

probability belonging to that class is selected by chance. For example, if the 

category medium was chosen, a probability of 0.4 means that in about 40% of 

cases, a category of the independent variable is assigned to the corresponding 

category of the dependent variable as determined by 𝑓(𝑥). In all other cases, the 

category of the independent variable is assigned randomly to any of the 

categories of the dependent variable.  

The true effect size of the population is calculated additionally with a sample of 

10,000 of true coding units. This effect size is used to assign the simulated 

process to one of the four classes of association’s/correlation’s strength since the 

probabilities do not exactly match the classification of Cohen (1988). 

Furthermore, the effect size for Cramer’s V depends on the number of 

categories, which is considered with this method. 

Step 2: Simulating Reliability Estimation of Content Analysis 

In the next step, the estimation of the reliability is modeled. This step assumes 

that several practitioners of content analysis draw a sample of coding units, rate 

the coding units and estimate the reliability of the codings. It further assumes 

that in practice, this sample is quite small (e.g., Früh, 2017, p. 180; Krippendorff, 
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2019, p. 394). The reason for the small sample size is cost-related, as several 

raters have to rate the coding units. Furthermore, the information obtained is 

often used to judge the quality of a coding scheme and, if the quality is not 

sufficient, to refine it. After each refinement, the raters have to draw a new 

sample of coding units and have to rate them in order to prove that the changes 

in the coding scheme indeed advanced the coding process. Thus, this phase 

poses high efforts for practitioners as it can be realized only with a limited sample 

size. For example, Früh (2017, p. 180) suggests about 30 to 50 codings for a scale 

as a minimum and 200 to 300 as a preferred size. Schreier (2012, p. 151) suggests 

about 10% to 20% of the final sample size for qualitative content analysis. 

Such a cycle of improvement can be found at multiple points in content analysis 

literature (Früh, 2017, p. 185; Krippendorff, 2019, p. 394; Kuckartz, 2018, p. 95; 

Mayring, 2015, pp. 10–109; Schreier, 2012, pp. 152–165). It implies that 

reliability is estimated before the central study is performed and that reliability 

estimations are done with small sample sizes. 

The simulation study implements these assumptions by splitting the reliability 

estimation and core study into separate processes. For the reliability estimation, 

the simulation generates a sample of coding units based on the true parameters’ 

values of step 1 with sample size 𝑛1. The size varies between 20 and 300 units. 

The true values of the independent variable of the coding units are generated 

based on the corresponding categorical sizes. The true values of the dependent 

variable are generated based on the corresponding categorical sizes and the true 

strength of the correlation/association. For the case of absence of a relationship, 

this implies that the distribution of the true categories for the dependent variable 

follow only the multinomial distribution characterized by the categorical sizes of 

the dependent variable. In the case of a perfect relationship, the distribution is 

determined by the categorical sizes of the independent variable. For the cases 

between a perfect and no relationship, the distribution of the dependent 

variable is a mixture of the multinomial distribution of the independent variable 

and the categorical sizes for the dependent variable, weighted by the strength of 

the relationship.  

The generated sample is the foundation for the coding process. The number of 

raters 𝑟 varies between two and five. Each rater judges the coding units of the 

sample according to the true Assignment Error Matrix for both variables.  
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The coding of every rater provides the basis for the computation of different 

reliability measures. The new Iota Index, Average Iota and Minimum Iota from 

the first generation, Krippendorff’s Alpha and the Percentage Agreement are 

applied. Krippendorff’s Alpha and Percentage Agreement provide comparison 

standards for the new measure. Percentage Agreement represents a more liberal 

measure and Krippendorff’s Alpha a more conservative one (Zhao et al., 2013, 

p. 473). Computation of both measures are done with the package irr (Gamer et 

al., 2019). The Iota Concept of the first generation is used to investigate if the 

second generation indeed provides a progression.  

Step 3: Simulating the Core Study of Content Analysis  

In the literature on content analysis, the core study is performed after the 

reliability estimation (Früh, 2017, p. 185; Krippendorff, 2019, p. 394; Kuckartz, 

2018, p. 95; Mayring, 2015, pp. 10–109; Schreier, 2012, pp. 152–165). This step 

assumes that not all coding units of the core study are rated by all raters because 

of the high sample size and the cost and time limitations in practice. Thus, the 

simulation assumes that the coding units are judged by only one rater. 

Similar to step 2, a sample of coding units is generated with sample size 𝑛2, 

varying between 100 and 3,000. For this sample the true association/correlation 

is calculated. In the next step, the simulated rater judges the coding units 

according to the true Assignment Error Matrix for both variables. At the end, all 

coding units are assigned to a category of both the independent and the 

dependent variable. On the basis of the coded data, the estimated sample 

association/correlation is calculated. This allows a comparison of the true and 

the estimated sample association/correlation. 

Analysis 

To measure the relationships, Cramer’s V is applied for nominal data and 

Kendall’s Tau for ordinal data. Kendall’s Tau is part of the basic 𝑅 program, while 

the calculation of Cramer’s V makes use of the package sjstats (Lüdecke, 2018).  

While the comparison of estimated and true sample association/correlation 

refers to RQ1, the simulation provides additional statistics for the other research 

questions. Concerning RQ2, the simulation compares the 𝑝-values associated 

with Cramers’ V and Kendall’s Tau and compares if the correct decision about the 

corresponding hypothesis is implied by the rated data. In this study, a Type I Error 

refers to the error that the null hypothesis is accepted based on the true sample 
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data while the estimated data implies a rejection. A Type II Error refers to the 

situation where the null hypothesis is rejected based on the true sample data 

while the estimated data implies an acceptance. The significance-level is set to 

0.05 which is a broadly accepted convention in the social sciences (Agresti, 2022, 

p. 181; Hayes, 2005, p. 166).  

Besides the level of significance, the effect size is another very important part of 

statistical analysis as even an effect size irrelevant for practice can be significant 

if the sample size is large enough (Rasch et al., 2010, p. 83). RQ3 addresses this 

issue by checking if the estimated data implies the same effect size as the data 

of the true sample. For ordinal data and Kendall’s Tau, the simulation makes use 

of Cohen (1988, pp. 79–80), implying that values below 0.1 indicate a practically 

not relevant relationship, between 0.1 to lower 0.3 a small effect, between 0.3 

to lower 0.5 a medium and about 0.5 a strong effect. For Cramer’s V, the concrete 

cut-off values depend on the number of columns of the corresponding 

frequencies table. These can be found in Cohen (1988, p. 222). Thus, the cut-off 

values depend on of the number of categories in the coding scheme. The table 

Cohen (1988, p. 222) provides is used exactly. 

The Iota Index is compared with other measures (RQ4) and the generated 

relationships between the degree of reliability on the one hand and the levels of 

deviation and errors on the other hand can be used to derive cut-off values for 

practice (RQ5).  

The relevant relationships are developed with a multilevel regression analysis 

performed with MPlus 8.8 (see section 5.1 for the reason of this analytical 

approach), which considers the hierarchal data structure generated by the 

simulation. During the simulation, 25,399 sets of true parameters are generated. 

For every set of true parameters, 8 reliability estimations are simulated (two for 

every possible number of raters). For every reliability estimation, 30 core study 

processes are generated. The sets of true parameters form level 1. These values 

are the same for all corresponding coding processes in step 2 and 3. In addition, 

the reliability estimates are the same for all corresponding coding processes in 

step 3.  

To consider the hierarchical structure of the data, a two-level model is fitted to 

the data where the reliability estimates form level 1 (between) and the simulated 

coding processes form level 2 (within). In contrast to the first simulation study, 
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the level of true parameters is not included in the model for two main reasons. 

First, the model should reflect practice and in practice the true values are not 

know. Second, including the level of true parameter sets would cluster the data 

according to their true reliability, leaving only a small amount of variance for the 

second and third level. 

The analysis assumes that the independent variable is as important as the 

dependent variable. In statistics, this is modelled by constraining the regression 

coefficients of both variables to be equal. Figure 15 shows the underlying model. 

The following section presents the respective results. 

 

Figure 15. Multi-Level-Model of Simulation Study II 

For the deviation between true and estimated sample association/correlation, a 

linear regression is applied. For Type I and II errors and for the correct 

classification of the effect size, probit regression is used since these variables 

represent a binary outcome.  

6.2 Results of Simulation Study II 

6.2.1 Overview 

The simulation generated about 6,044,572 coding processes. These coding 

processes are nested within 201,486 reliability estimations before coding. Both 
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processes are based on 25,399 different sets of true parameters. Table 15 shows 

the distribution of cases to different levels of data (nominal and ordinal) and 

different strengths of true associations/correlations between the independent 

and dependent variable. 

Table 15. Sample Size of Simulation Study II 

Nominal Data 

 No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Set of True Parameters 1,703 2,297 1,840 4,382 2,555 

𝑁𝐵𝑒𝑡𝑤𝑒𝑒𝑛 
(Reliability Estimation) 13,468 18,157 14,511 34,855 20307 

𝑁𝑊𝑖𝑡ℎ𝑖𝑛 
(Coding Processes) 404,039 544,710 435,330 1,045,649 609,204 

Ordinal Data 

 No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Set of True Parameters 2,771 2,902 2,543 1,823 2,583 

𝑁𝐵𝑒𝑡𝑤𝑒𝑒𝑛 
(Reliability Estimation) 22,041 23,011 20,168 14,532 20,436 

𝑁𝑊𝑖𝑡ℎ𝑖𝑛 
(Coding Processes) 661,230 690,330 605,040 435,960 613,080 

An initial inspection of the relationship between the different degrees of 

reliability and the deviation from the true sample association for the case of 

nominal data and a strong relationship is provided in Figure 16. Figures for 

ordinal data and other configurations of the effect size can be found in Appendix 

B. 
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Figure 16. Relationship Between Estimated Reliability and Deviation from the 
True Association.  

For every measure, a higher degree of reliability implies less deviation between 

estimated and true association. The relationship can be characterized as a linear 

relationship for all measures. This characterization holds even for other strengths 

of association and for all configurations of ordinal data (see Appendix B). Only 

for a perfect association and nominal data neither the Iota Index nor the 

Percentage Agreement follow a linear, but rather a quadratic relationship. A 

similar result occurs for a strong and a perfect ordinal relationship (see Appendix 

B). For all measures the uncertainty decreases with an increased strength of 

association/correlations as the width of the 95% interval decreases. Since the 

linear relationship occurs for most configurations, the following analyses apply 

linear models. Appendix C provides an overview for the global model fit. 

According to the simulation study of Hu and Bentler (1999, pp. 27–28), an RMSEA 

below .06 and an SRMR below .09 indicate a global model fit. Additionally, a CFI 

of at least .950 points to a global model fit. As the tables in Appendix C indicate, 

all estimated models are in line with these rules. The only exceptions are the 

models for the absence of association in nominal data for the Iota Index, Average 
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Iota and Krippendorff’s Alpha, as well as the absence of a correlation in ordinal 

data for Minimum Iota in terms of a correct classification of the effect size. Here, 

the CFI is below .950. Since RMSEA and SRMR are in line with the rules of thumb 

developed by Hu and Bentler (1999), they remain part of the following analysis.  

Furthermore, in terms of the correct classification of the effect size, most models 

could not be estimated under the condition of a perfect association/correlation 

in both nominal and ordinal data. For nominal data, the corresponding model 

could not be estimated for Minimum Iota and Percentage Agreement under the 

condition of a strong association. Thus, these models cannot be considered in 

the following analysis. Table 16 reports the values for 𝑅² on the first level 

showing how well the different reliability measures are able to predict the 

average deviation and the average error rates. 
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Table 16. 𝑅𝐿𝑒𝑣𝑙 1 𝑜𝑛𝑙𝑦
2  for the Prediction of the Average Deviation and Error Rates 

Nominal Data 

Deviation 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .101 .200 .420 .541 .775 
Average Iota .081 .148 .323 .451 .693 

Minimum Iota  .030 .061 .170 .332 .583 
Krippendorff’s Alpha .110 .199 .382 .527 .821 

Percentage Agreement .006 .019 .085 .299 .488 

Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .044 .706 .746 .725 .669 
Average Iota .045 .599 .586 .556 .509 

Minimum Iota  .029 .541 .522 .423 .578 
Krippendorff’s Alpha .052 .681 .694 .654 .632 

Percentage Agreement .013 .456 .450 .355 .443 

Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .008 .053    
Average Iota .001 .035    

Minimum Iota  .004 .003    
Krippendorff’s Alpha .007 .055    

Percentage Agreement .008 0    

Effect Size 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .002 .484 .538 .757  
Average Iota .012 .408 .495 .658  

Minimum Iota  .048 .264 .397   
Krippendorff’s Alpha .006 .492 .553 .766  

Percentage Agreement .058 .174 .320   
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Table 16. 𝑅𝐿𝑒𝑣𝑙 1 𝑜𝑛𝑙𝑦
2  for the Prediction of the Average Deviation and Error Rates 

(Continued) 

Ordinal Data 

Deviation 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .288 .385 .605 .680 .708 
Average Iota .244 .345 .556 .607 .642 

Minimum Iota  .191 .297 .502 .541 .579 
Krippendorff’s Alpha .293 .412 .658 .723 .779 

Percentage Agreement .169 .261 .446 .482 .512 

Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .094 .644 .681 .673 .637 
Average Iota .093 .522 .563 .535 .502 

Minimum Iota  .082 .429 .480 .458 .415 
Krippendorff’s Alpha .100 .665 .678 .666 .627 

Percentage Agreement .074 .391 .413 .375 .326 

Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .005 .037    
Average Iota .001 .041    

Minimum Iota  .000 .047    

Krippendorff’s Alpha .001 .040    
Percentage Agreement .002 .046    

Effect Size 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .006 .480 .636 .831 .523 
Average Iota .004 .436 .548 .684  

Minimum Iota  .001 .386 .487 .593  
Krippendorff’s Alpha .005 .538 .676 .864 .943 

Percentage Agreement .000 .353 .492 .701  

Focusing on the deviation between true and estimated association for nominal 

data, the values for 𝑅² increase for stronger true relationships. This is plausible 

since the relevance of reliability increases the more a real structure exists behind 

the relationship of two variables. Independently from the concrete level of the 

true relationship, percentage agreement performs the worst. Average Iota and 

Minimum Iota perform significantly better. For example, 𝑅² is about 45.1% for 

Average Iota in contrast to 29.9% for Percentage Agreement for a strong 

relationship. Krippendorff’s Alpha and the new Iota Index perform best. Both 
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perform similarly well with the Iota Index performing slightly better in the 

practically relevant range. 

Concentrating on the prediction of Type I Errors, the ranking of the reliability 

measure is similar to the ranking for deviation. The Iota Index and Krippendorff’s 

Alpha perform best, followed by Average Iota, Minimum Iota and lastly 

Percentage Agreement. Here, the Iota Index has generally higher values for 𝑅² 

than Krippendorff’s Alpha. The values for 𝑅² are stable across different strengths 

of true associations. Only in the case where the true association is practically 

absent, the explained variance is meaningfully lower for all measures. 

A similar result occurs for the proper characterization of the effect size. 

Percentage Agreement performs the worst in predicting error in the 

characterization of the association’s effect size. The other measures perform 

better. The Iota Index and Krippendorff’s Alpha perform best. 

For Type II Errors, all measures perform badly. The reason could be in the low 

frequency of Type II Errors in the simulated data and the comparatively high 

sample sizes for the coding processes on level 2. A high sample size increases the 

chance that a significance test becomes significant even for very low effect sizes.  

For ordinal data, the results are similar. The Iota Index and Krippendorff’s Alpha 

perform best while Krippendorff’s Alpha shows slightly higher values for 𝑅² in 

terms of deviation. Average Iota and Minimum Iota are in the middle and 

Percentage Agreement performs the worst. The following section analyzes the 

relationships in detail, starting with the deviation between true and estimated 

sample associations/correlations. 

6.2.2 Analyses of the Deviation Between True and Estimated Sample 
Association/Correlation 

Table 17 provides detailed insights into the estimated models by showing the 

standardized regression coefficients and the corresponding values for 𝑅². 
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Table 17. Standardized Regressions Coefficient for the Deviation Between True 
and Estimated Sample Association/Correlation. 

Measure  

Nominal Data Ordinal Data 

Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  

Index 0 -.218* .101 -.190* .036 -.372* .288 -.245* .06 

 1 -.316* .200 .158* .025 -.441* .385 -.018* 0 

 2 -.460* .420 .187* .035 -.532* .605 .001 0 

 3 -.514* .541 .206* .043 -.583* .680 .001 0 

 4 -.614* .775 .145* .021 -.587* .708 .001 0 

Average 0 -.194* .081 -.190* .036 -.338* .244 -.245* .06 

 1 -.267* .148 .158* .025 -.414* .345 -.018* 0 

 2 -.395* .323 .187* .035 -.506* .556 .001 0 

 3 -.462* .451 .206* .043 -.543* .607 .001 0 

 4 -.576* .693 .145* .021 -.552* .642 .001 0 

Minimum 0 -.117* .030 -.190* .036 -.296* .191 -.245* .06 

 1 -.168* .061 .158* .025 -.381* .297 -.018* 0 

 2 -.284* .170 .187* .035 -.480* .502 .001 0 

 3 -.394* .332 .206* .043 -.514* .541 .001 0 

 4 -.526* .583 .145* .021 -.519* .579 .001 0 

Alpha 0 -.228* .110 -.190* .036 -.375* .293 -.245* .06 

 1 -.313* .199 .158* .025 -.462* .412 -.018* 0 

 2 -.438* .382 .187* .035 -.559* .658 .001 0 

 3 -.508* .527 .206* .043 -.603* .723 .001 0 

 4 -.627* .821 .145* .021 -.608* .779 .001 0 

Percent 0 -.052* .006 -.190* .036 -.265* .169 -.245* .06 

 1 -.091* .019 .158* .025 -.340* .261 -.018* 0 

 2 -.192* .085 .187* .035 -.431* .446 .001 0 

 3 -.357* .299 .206* .043 -.458* .482 .001 0 

 4 -.455* .488 .145* .021 -.463* .512 .001 0 

Note.  
* significant at the 5%-Level. 
Coefficient of reliability measures for independent and dependent variable constrained to be equal. 
0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

Table 17 shows that the relevance of the reliability measures increases with an 

increasing strength of true association/correlation. In contrast, the relevance of 

the sample size decreases when the strength of the true relationship increases. 

This is shown by the decreasing values for 𝑅² on the level of the core studies.  

In the case of ordinal data, a higher sample size in a core study is associated with 

less deviation. In contrast, a higher sample size leads to a stronger deviation 

between the estimated and true sample association for nominal data, except for 

the cases where there is practically no true relationship. This result is surprising 

since a higher sample size should normally decrease the deviation. A potential 
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reason for the strange behavior of the sample size for nominal data could be that 

low levels of reliability imply a false structure of measured data that becomes 

more prominent with a higher sample size.  

Figure 17 shows which deviation between the true and estimated sample 

association for nominal data has to be expected for different degrees of reliability 

and measures. Due to limited space, Figure 17 stands as a representative for all 

investigated configurations of ordinal data. 

 

Figure 17. Expected Deviation Between True and Estimated Sample Association 
(Nominal Data). 

The dotted lines in Figure 17 represent the relationships for the case of a perfect 

true relationship, which is not realistic for practice. The bold solid lines represent 

the more realistic cases ranging from practically no true association up to a 

practically strong true association. The density of the lines indicates the strength 

of association. The thicker the line, the stronger is the true association. The 

dashed lines on the horizontal emphasize a deviation of 0.1 and 0.3 which can be 

interpreted as the borders for a practically irrelevant deviation (0.1) and only a 

small practical deviation (0.3). These cut-off values are inspired by the taxonomy 
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of Cohen (1988, pp. 79–80) and are intended to classify the practical relevance 

of product-moment-correlations. 

In Figure 17, the lines for the weaker associations are below the lines for the 

stronger associations. This implies that cases with a stronger true association 

have higher demands on the reliability than situations with a lesser true 

association. The intersections between a) the horizontal lines and b) the lines 

representing the expected deviation can be used to derive cut-off values. They 

characterize the necessary level of reliability to meet the assumption that the 

estimated association does not deviate more than 0.1 or 0.3 from the true value, 

respectively. Table 18 reports the specific intersections. 
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Table 18. Potential Cut-Off Values for Deviation 

  Nominal Ordinal 

 
 Expected 

Deviation 95% Interval 
Expected 
Deviation 95% Interval 

  less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 

Iota Index 0 0 0 0 0 0 0 .645 0 
 1 .427 0 1 0 .791 0 1 .347 
 2 .834 .240 1 .646 .996 .553 1 .841 
 3 .966 .604 1 .890 1 .762 1 .992 
 4 1 .932 1 1 1 .976 1 1 

Average Iota 0 0 0 0 0 0 0 .403 0 
 1 .146 0 .997 0 .546 0 1 .087 
 2 .614 0 1 .433 .766 .298 1 .616 

 3 .755 .344 1 .696 .847 .521 1 .791 
 4 .899 .700 1 .913 .931 .740 1 .974 

Minimum Iota  0 0 0 0 0 0 0 .335 0 
 1 0 0 1 0 .471 0 1 .005 
 2 .634 0 1 .453 .694 .215 1 .557 
 3 .717 .250 1 .687 .785 .450 1 .747 
 4 .849 .637 1 .899 .859 .664 1 .923 

Krippendorff’s Alpha 0 0 0 0 0 0 0 .461 0 
 1 .206 0 1 0 .627 0 1 .104 
 2 .695 0 1 .482 .871 .356 1 .673 
 3 .863 .416 1 .774 .963 .606 1 .861 
 4 1 .789 1 .969 1 .842 1 1 

Percentage 
Agreement 

0 0 0 0 0 0 0 .564 0 
1 0 0 1 0 .740 0 1 .135 

 2 1 0 1 .844 1 .399 1 .857 
 3 1 .437 1 1 1 .697 1 1 
 4 1 .967 1 1 1 .995 1 1 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship, 
 4 = perfect relationship. 

Table 18 indicates that regarding the Iota Index, a value of .604 for both variables 

(independent and dependent) is associated with a deviation between true and 

estimated sample association (nominal data) of less than 0.3 for cases with a 

strong true association. For Krippendorff’s Alpha, the corresponding value for 

both variables is about .416,.344 for Average Iota,.250 for Minimum Iota and 

.437 for Percentage Agreement.  

Table 18 also illustrates the values for ordinal data. For example, if the expected 

deviation is not supposed to exceed a small value relevant for practice, the Iota 

Index must be at least .762, Average Iota .521, Minimum Iota .450, Krippendorff’s 
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Alpha .606 and Percentage Agreement .697 for situations with a strong 

correlation.  

The described cut-off values are the values for the expected deviation. They 

represent the best estimate for the deviation. However, they do not account for 

uncertainty. The prediction’s precision can be characterized by the standard 

error of the estimate. This error also allows the calculation of prediction intervals, 

which characterizes the probability that the true value is within a specific range 

around the prediction (Afifi et al., 2020, p. 119). Table 19 reports the standard 

error of the estimate for the different measures. The standard errors show that 

the Iota Index and Krippendorff’s Alpha perform similarly, with Percentage 

Agreement showing the highest error. Something similar is true for ordinal data. 

Table 19. Standard Error of Estimate for the Deviation 

Nominal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .02302185 .05912678 .08318308 .09618919 .11236856 
Average Iota .02310696 .06059429 .08881300 .10417783 .12999450 
Minimum Iota  .02332581 .06299857 .09699768 .11392911 .15039592 
Krippendorff’s Alpha .02298175 .05917576 .08542422 .09747899 .10128250 
Percentage Agreement .02342492 .06409401 .10124673 .11654122 .16610964 

Ordinal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .03240891 .0623095 .07901177 .09202779 .13563398 
Average Iota .03266069 .06364934 .08275053 .10054227 .14939469 
Minimum Iota  .03295476 .06519173 .08672944 .10765697 .16150227 
Krippendorff’s Alpha .03238294 .06142252 .07479100 .08671020 .11896303 
Percentage Agreement .03307854 .06633126 .09058814 .11363413 .17349891 

With the help of the standard error of estimates, the 95% interval is estimated 

and the intersection with the horizontal lines is calculated. These values ensure 

that with a certainty of 95% that the deviation between true and estimated 

association/correlation is less than 0.1 and 0.3, respectively.  

As can be seen in Table 18, all measures need to be on their highest values to 

ensure a deviation of less than 0.1 in nearly all situations. This points to a 

weakness of all investigated reliability measures and points to the need of better 

estimation methods for the reliability to enable more precise predictions. 
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In addition, cut-off values can be derived for situations in which the deviation 

should not exceed a small practical effect. For example, assuming a strong true 

association in practice, a value of .890 for the Iota Index, of .696 for Average Iota, 

of .687 for Minimum Iota and of.774 for Krippendorff’s Alpha ensures with a 

certainty of 95% that the deviation between the estimated and true association 

does not exceed more than 0.3 for nominal data. The next section characterizes 

the measures’ predictive power for Type I Errors. 

6.2.3 Analyses of Type I Errors 

Table 20 reports the standardized regression coefficients along with the values 

for 𝑅². It shows that in the core study, a higher sample size implies a reduction 

of Type I Errors, except for a weak true association/correlation. The sample size 

explains between 0% and 35.3% of variations between the core studies.  
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Table 20. Standardized Regression Coefficient for Type I Errors. 

Measure  

Nominal Data Ordinal Data 

Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  

Index 0 -.144* .044 .348* .121 -.213* .094 .309* .096 

 1 -.594* .706 -.035* .001 -.57* .644 -.296* .087 

 2 -.613* .746 -.528* .279 -.565* .681 -.485* .236 

 3 -.595* .725 -.594* .353 -.579* .673 -.498* .248 

 4 -.571* .669 -.564* .318 -.556* .637 -.502* .252 

Average 0 -.146* .045 .348* .121 -.208* .093 .309* .096 

 1 -.536* .599 -.036* .001 -.509* .522 -.297* .088 

 2 -.533* .586 -.528* .279 -.510* .563 -.486* .236 

 3 -.513* .556 -.594* .353 -.510* .535 -.498* .248 

 4 -.493* .509 -.564* .318 -.488* .502 -.502* .252 

Minimum 0 -.116* .029 .348* .121 -.194* .082 .309* .096 

 1 -.502* .541 -.037* .001 -.459* .429 -.297* .088 

 2 -.497* .522 -.528* .279 -.469* .480 -.486* .236 

 3 -.445* .423 -.594* .353 -.473* .458 -.498* .248 

 4 -.523* .578 -.529* .280 -.440* .415 -.502* .252 

Alpha 0 -.157* .052 .348* .121 -.219* .1 .309* .096 

 1 -.581* .681 -.036* .001 -.587* .665 -.296* .088 

 2 -.591* .694 -.528* .279 -.568* .678 -.486* .236 

 3 -.566* .654 -.594* .353 -.579* .666 -.498* .248 

 4 -.551* .632 -.564* .318 -.545* .627 -.502* .252 

Percent 0 -.073* .013 .348* .121 -.176* .074 .309* .096 

 1 -.442* .456 -.036* .001 -.416* .391 -.297* .088 

 2 -.442* .45 -.528* .279 -.415* .413 -.486* .236 

 3 -.389* .355 -.594* .353 -.403* .375 -.498* .248 

 4 -.434* .443 -.533* .284 -.370* .326 -.502* .252 

Note.  
* significant at the 5%-Level. 
Coefficient of reliability measures for independent and dependent variable constrained to be equal. 
0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

Figure 18 shows the expected probability for a Type I Error to occur for different 

configurations of true association in nominal data. Likewise, as in Figure 17, the 

horizontal dashed lines represent the probability of 5% and 10% for a Type I Error 

to occur, which can be used to derive cut-off values for the necessary reliability. 

The figure illustrates that with increasing reliability, the chance for a Type I Error 

decreases. That is, the higher the reliability, the smaller the risk that the 

estimated association implies the rejection of an association although the true 

sample association would imply acceptance. Figure 18 also illustrates that the 

curves for stronger true associations are below the curves for the weaker true 

associations. Thus, situations with a smaller true association put higher demands 
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on the reliability in terms of Type I Errors than situations with a stronger true 

association.  

 

Figure 18. Expected Risk of Type I Error (Nominal Data). 

Table 21 reports the intersections of the curves with the horizontal dashed lines. 

If the risk for a Type I Error to occur needs to be less than 5%, values of .797for 

the Iota Index for a medium weak true association, of .624 for a strong true 

association and of .483 for a perfect true association are necessary. Thus, the 

stronger the true association, the lower the demands for the reliability to lead 

researchers to make the “right” decisions. 

If the risk for a Type I Error is supposed to be less than 10%, a value of .797 for 

the Iota Index, of .500 for Average Iota, of .427 for Minimum Iota, of .579 for 

Krippendorff’s Alpha and of .691 for Percentage Agreement is necessary for a 

medium true association.  
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Table 21. Potential Cut-Off Values for Type I Errors 

  Nominal Ordinal 

 
 Expected 

Deviation 95% Interval 
Expected 
Deviation 95% Interval 

 
 

less 5% 
less 
10% less 5% 

less 
10% less 5% 

less 
10% less 5% 

less 
10% 

Iota Index 0 .937 .517 1 1 1 .792 1 1 
 1 1 .920 1 1 .919 .858 1 .971 
 2 .797 .749 .874 .827 .732 .691 .800 .759 
 3 .624 .590 .670 .636 .642 .607 .697 .663 
 4 .483 .455 .517 .489 .563 .532 .610 .580 

Average Iota 0 .674 .268 1 1 .802 .540 1 1 
 1 .783 .693 .965 .875 .687 .621 .817 .751 

 2 .550 .500 .640 .590 .474 .433 .551 .509 
 3 .349 .313 .405 .369 .375 .338 .438 .401 
 4 .186 .158 .225 .197 .280 .248 .334 .302 

Minimum Iota  0 .672 .182 1 1 .731 .461 1 1 
 1 .715 .623 .904 .812 .624 .554 .767 .697 
 2 .477 .427 .572 .521 .397 .353 .480 .437 
 3 .251 .210 .318 .277 .293 .255 .362 .324 
 4 .210 .172 .263 .225 .181 .148 .241 .207 

Krippendorff’s Alpha 0 .764 .320 1 1 .938 .634 1 1 
 1 .886 .788 1 .982 .774 .703 .906 .835 
 2 .633 .579 .726 .672 .555 .508 .637 .589 
 3 .426 .385 .486 .445 .450 .411 .515 .476 
 4 .246 .215 .285 .254 .342 .307 .397 .362 

Percentage 
Agreement 

0 1 .321 1 1 1 .720 1 1 
1 1 .940 1 1 .943 .850 1 1 

 2 .758 .691 .889 .821 .649 .589 .767 .707 
 3 .452 .394 .550 .491 .510 .456 .611 .557 
 4 .387 .324 .479 .416 .365 .317 .451 .403 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

In order to take the uncertainty of estimations into account, the standard error 

of estimates (Table 22) is used to calculate prediction intervals that ensure with 

a probability of 95% that the occurrence of Type I Errors is less than 5% or 10%, 

respectively. According to Table 21, a value of .827 for the Iota Index, of .590 for 

Average Iota, of .521 for Minimum Iota, of .672 for Krippendorff’s Alpha and of 

.821 for Percentage Agreement is necessary in the case of a medium true 

association to ensure with a certainty of 95% that a Type I Error occurs in less 

than 10%. The following section presents the results for Type II Errors. 



Iota Reliability Concept of the Second Generation  

 

72 

Table 22. Residual Standard Error of Prediction for Type I Errors 

Nominal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .42856035 .42958436 .36225307 .30446269 .26792103 
Average Iota .42855644 .44557885 .39834627 .33746289 .30799488 
Minimum Iota  .42975522 .45208895 .41157883 .36516304 .30803597 
Krippendorff’s Alpha .42805091 .43490002 .37833164 .32354269 .27818507 
Percentage Agreement .43092232 .45790905 .4264159 .37081686 .31950746 

Ordinal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .45801823 .40695612 .37214645 .35501956 .34025083 

Average Iota .45829256 .43491035 .40602906 .38261695 .36704729 
Minimum Iota  .45918752 .44925069 .42215707 .39961533 .39505928 
Krippendorff’s Alpha .4576995 .40989475 .38421015 .36218248 .34144588 
Percentage Agreement .45979262 .45411463 .44047686 .41527418 .39605687 

6.2.4 Analyses of Type II Errors 

Table 23 reports the details for Type II Errors. Compared to the absence of a true 

association/correlation, the degree of reliability is more important when there is 

at least a true weak association/correlation present. Furthermore, the sample 

size becomes the relevant influencing factor showing high values for 𝑅². 

Surprisingly, if there is a weak true association/correlation, higher reliability 

values imply an increased risk for Type II Errors while a larger sample size implies 

a lower risk.  
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Table 23. Standardized Regression Coefficient for Type II Errors. 

Measure  

Nominal Data Ordinal Data 

Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  

Index 0 .062* .008 -.068* .005 .047* .005 -.096* .009 
 1 .163* .053 -.515* .266 .137* .037 -.769* .591 
Average 0 .024 .001 -.068* .005 .020 .001 -.096* .009 
 1 .130* .035 -.515* .266 .143* .041 -.769* .591 
Minimum 0 -.043* .004 -.068* .005 .009 0 -.096* .009 
 1 .040* .003 -.515* .265 .152* .047 -.769* .591 
Alpha 0 .058* .007 -.068* .005 .024* .001 -.096* .009 
 1 .164* .055 -.515* .266 .145* .040 -.769* .591 
Percent 0 -.057* .008 -.068* .005 .026* .002 -.096* .009 
 1 .013 0 -.515* .265 .143* .046 -.769* .591 

Note.  
* significant at the 5%-Level. 
Coefficient of reliability measures for independent and dependent variable constrained to be 
equal. 
0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

Figure 19 illustrates the expected risk for a Type II Error. The curves are below 

the dashed lines for 10% in every case and even below the line for 5% of 

occurrence for a broad range of reliability. This illustrates that the sample size 

rather than the reliability is a crucial factor of influence. 
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Figure 19. Expected Risk of Type II Errors (Nominal Data). 

It is not possible to derive cut-off values for Type II Errors, since higher values of 

reliability are more error-prone. Furthermore, the values of 𝑅² are low for the 

reliability measures. 

6.2.5 Analysis of Correct Classification of Effect Sizes 

Table 24 presents the standardized coefficients and the values for the explained 

variance on the different chances for the correct classification of effect sizes. In 

general, a higher degree of reliability leads to an increased chance that the 

estimated sample associations/correlations lead to the same classification of 

effect size as the true sample association/correlation. Surprisingly, a higher 

sample size in the core study is associated with a decreasing chance to classify 

the effect size correctly. However, this influence is only weak. In cases with no 

true association/correlation, a higher sample size increases the chance for a 

correct classification.  
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Table 24. Standardized Regression Coefficient for the Correct Classification of 
Effect Sizes. 

Measure  

Nominal Data Ordinal Data 

Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  Measure 𝑅𝐿𝑒𝑣𝑒𝑙 1
2  Sample Size 𝑅𝐿𝑒𝑣𝑒𝑙 2

2  

Index 0 .031* .002 .205* .042 .052* .006 .369* .136 

 1 .492* .484 -.342* .117 .492* .48 -.162* .026 

 2 .521* .538 -.25* .062 .546* .636 -.156* .024 

 3 .608* .757 -.231* .053 .644* .831 -.206* .043 

 4     .504* .523 -.044* .002 

Average 0 .076* .012 .205* .042 .044* .004 .369* .136 

 1 .442* .408 -.342* .117 .465* .436 -.162* .026 

 2 .49* .495 -.249* .062 .502* .548 -.155* .024 

 3 .558* .658 -.231* .054 .577* .684 -.206* .043 

 4         

Minimum 0 .148* .048 .205* .042 .019* .001 .369* .136 

 1 .350* .264 -.342* .117 .435* .386 -.162* .026 

 2 .434* .397 -.249* .062 .473* .487 -.155* .024 

 3     .538* .593 -.206* .043 

 4         

Alpha 0 .051* .006 .205* .042 .047* .005 .369* .136 

 1 .494* .492 -.342* .117 .528* .538 -.162* .026 

 2 .528* .553 -.25* .062 .567* .676 -.156* .024 

 3 .613* .766 -.235* .055 .659* .864 -.207* .043 

 4     .669* .943 -.039* .002 

Percent 0 .155* .058 .205* .042 .007 0 .369* .136 

 1 .273* .174 -.342* .117 .395* .353 -.162* .026 

 2 .373* .32 -.249* .062 .453* .492 -.155* .024 

 3     .551* .701 -.206* .043 

 4         

Note.  
* significant at the 5%-Level. 
Coefficient of reliability measures for independent and dependent variable constrained to be equal. 
0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

Figure 20 presents the expected probability for a correct classification of the 

effect size for the different measures and different configurations of true 

association. The dashed horizontal lines indicate a chance of 90% or 95% to 

correctly classify the effect size. Table 25 shows the concrete intersections of the 

curves with these horizontal lines in order to derive cut-off values. 
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Figure 20. Expected Chance for a Correct Classification of Effect Sizes (Nominal 
Data) 
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Table 25. Potential Cut-Off Values for Effect Size Classification 

  Nominal Ordinal 

 
 Expected 

Deviation 95% Interval 
Expected 
Deviation 95% Interval 

 
 more 

95% 
more 
90% 

more 
95% 

more 
90% 

more 
95% 

more 
90% 

more 
95% 

more 
90% 

Iota Index 0 1 1 1 1 1 .532 1 1 
 1 .987 .896 1 1 1 1 1 1 
 2 1 1 1 1 1 1 1 1 
 3 .907 .882 .941 .916 1 1 1 1 
 4     .817 .809 .827 .819 

Average Iota 0 1 1 1 1 1 .269 1 1 
 1 .775 .674 .979 .878 .859 .783 .992 .917 

 2 1 .965 1 1 .971 .918 1 .975 
 3 .7 .668 .747 .715 .915 .884 .937 .906 
 4         

Minimum Iota  0 1 .957 1 1 1 .095 1 1 
 1 .791 .669 1 .924 .788 .71 .927 .85 
 2 1 .946 1 1 .915 .859 .975 .92 
 3     .877 .843 .902 .868 
 4         

Krippendorff’s Alpha 0 1 1 1 1 1 .317 1 1 
 1 .860 .753 1 .963 .964 .882 1 1 
 2 1 1 1 1 1 1 1 1 
 3 .795 .764 .837 .806 .977 .949 .995 .968 
 4     .649 .634 .662 .648 

Percentage 
Agreement 

0 1 1 1 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 

 2 1 1 1 1 1 1 1 1 
 3     1 1 1 1 
 4         

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship, 
4 = perfect relationship. 

The interpretation is similar to that of the other sections. If the chance to 

correctly classify the effect size should be at least 90% under the condition of a 

strong true association, the Iota Index must be at least .882, Average Iota at least 

.668 and Krippendorff’s Alpha at least .764. For Minimum Iota and percentage 

agreement, no model could be estimated.  

To consider the uncertainty in estimations, Table 26 reports the standard error 

of estimates. This is employed when calculating the curves to ensure that the 

chances of a correct classification hold true in 95% of cases. According to Table 

25, the Iota Index must be at least .916, Average Iota at least .715 and 
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Krippendorff’s Alpha at least .806 to ensure that the chance for a correct 

classification is at least 90% (for a strong true association) with a certainty of 

95%. The following section summarizes the results.  

Table 26. Residual Standard Error of Prediction for Classification of Effect Sizes 

Nominal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .39153958 .43651241 .26855155 .30533175  
Average Iota .39123590 .44689353 .26566314 .32420636  
Minimum Iota  .39047224 .46099874 .27235053   
Krippendorff’s Alpha .39139074 .43610799 .25940090 .29713650  
Percentage Agreement .39018655 .46794704 .28554146   

Ordinal Data 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .28583459 .37786995 .23781684 .15467564 .26651092 
Average Iota .28586547 .39029558 .23713670 .15774974  
Minimum Iota  .28597555 .39910332 .24090050 .16234238  
Krippendorff’s Alpha .28586989 .36912086 .22394821 .14539892 .20545627 
Percentage Agreement .28601844 .39940086 .25039935 .16569055  

6.3 Summary of Simulation Study II 

Simulation study II aims to provide first insights into the predictive power of the 

new Iota Index, its performance compared to other measures and potential cut-

off values for practice. To provide a realistic picture, only the data for the range 

of true associations/correlations relevant for practice is used for both this 

summary and further analysis since a perfect relationship cannot be assumed to 

be plausible in practical situations. The range of strength of 

association/correlation relevant for practice is based on the classification 

provided by Cohen (1988). With the help of simulation study II, the following 

answers are currently possible:  

RQ1 How strong does the Iota Index predict the deviation between true and 

estimated sample association/correlation for nominal/ordinal data to be? 

Two-level regression analysis indicates that the Iota Index explains between 

10.1% (nominal data, no true association) to 68.0% (ordinal data, strong 

correlation) of the variation in the deviation between true and estimated 

association.  
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RQ2 How strong does the Iota Index predict Type I and Type II Errors in accepting 

and rejecting hypothesis of association/correlation to be? 

In the current study, a Type I Error refers to situations where the true sample 

association/correlation implies the acceptance of an association (the null 

hypothesis is rejected) while the estimated sample association/correlation 

implies a rejection (the null hypothesis is accepted). The two-level probit 

regression of simulation study II shows that for nominal data, the corresponding 

𝑅² is between 70.6% and 74.6% for nominal data and between 64.4% and 68.1% 

for ordinal data. In the case of absence of a true association/correlation, 𝑅² 

ranges between 4.4% (nominal data) and 9.4% (ordinal data). Thus, for a broad 

range of practical applications the Iota Index shows a relatively high predictive 

power.  

A Type II Error occurs in situations where the existence of an 

association/correlation in the true sample is rejected (acceptance of null 

hypothesis) while the estimated sample implies the acceptance of an 

association/correlation (rejection of null hypothesis). In this case, the Iota Index 

explains about 5.3% of the variance in the best case.  

RQ3 How strong does the Iota Index predict the correct effect size of an 

association/correlation to be? 

The two-level probit regression analyzes the relationship between the numerical 

value of the Iota Index and the chance to correctly classify an effect size. That is, 

the chance to correctly classify an association or correlation as practically 

irrelevant, as a small, medium or strong effect based on the work of Cohen 

(1988). The analysis reveals that 𝑅² increases for stronger true effects ranging 

from 48.4% (weak association) to about 75.7% for a strong association. In the 

case of ordinal data, 𝑅² ranges from 48.0% to 83.1%. In case of absence of a true 

association (nominal data), 𝑅² is only 0.2% and in case of absence of a true 

correlation (ordinal data), 𝑅² is only 0.6%.  

RQ4 How does the Iota Index perform in predicting consequences in comparison 

to the old Iota Concept and other measures of inter-rater reliability? 

Comparing the new Iota Index with the old measures from the Iota Concept of 

the first generation (Average Iota, Minimum Iota), it is revealed that the new 

index produces higher values for nearly all prediction tasks and both kinds of data 
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(nominal, ordinal). The differences are significant. For example, referring to 

nominal data and a strong true association, the Iota Index explains about 72.5% 

of variance in Type I Errors while Average Iota explains only 55.6% and Minimum 

Iota about 42.3%. Thus, the second generation of the Iota Concept is a real 

improvement compared to the old concept. 

Comparing the Iota Index with other established measures, only Krippendorffs’ 

Alpha reveals a predictive power comparable to the Iota Index. For all estimated 

models, Krippendorff’s Alpha and the Iota Index perform in a similar manner. In 

some situations, Krippendorff’s Alpha is slightly better, in some the Iota Index. 

Percentage Agreement performs the worst in nearly all models. 

RQ5 What are meaningful cut-off values for reliability in practical situations? 

The derivation of meaningful cut-off values based merely on the analysis is a 

difficult task. The results indicate that even on their highest level, not all 

measures can ensure error-free measurements since the reliability values 

themselves are estimates for reliability, thus suffering from estimation errors. 

Table 27 summarizes the derived cut-off values. The table shows the most 

demanding conditions and the highest values necessary for the different target 

variables for both nominal and ordinal data. For Type I Errors, the situations with 

the most demanding conditions are ambiguous. Thus, the row with the highest 

value for the weak practical deviations is chosen to ensure the highest possible 

minimal level of reliability. 
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Table 27. Summary of Cut-Off Values 

  Nominal  Ordinal 

  Expected Effect 95% Interval  Expected Deviation 95% Interval 

 
 No 

practical 
Weak 

practical 
No 

practical 
Weak 

practical 
 No 

practical 
Weak 

practical 
No 

practical 
Weak 

practical 

Iota Index           

Deviation 3 .966 .604 1 .890 3 1 .762 1 .992 

Type I Error 1 1 .920 1 1 1 .919 .858 1 .971 

Type II Error -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

Effect Size 1 .987 .896 1 1 1 1 1 1 1 

Average Iota           

Deviation 3 .755 .344 1 .696 3 .847 .521 1 .791 

Type I Error 1 .783 .693 .965 .875 1 .687 .621 .817 .751 

Type II Error -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

Effect Size 2 1 .965 1 1 2 .971 .918 1 .975 

Minimum Iota            

Deviation 3 .717 .250 1 .687 3 .785 .450 1 .747 

Type I Error 1 .715 .623 .904 .812 1 .624 .554 .767 .697 

Type II Error -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

Effect Size 2 1 .946 1 1 2 .915 .859 .975 .92 

Krippendorff’s Alpha           

Deviation 3 .863 .416 1 .774 3 .963 .606 1 .861 

Type I Error 1 .886 .788 1 .982 1 .774 .703 .906 .835 

Type II Error -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

Effect Size 2 1 1 1 1 2 1 1 1 1 

Percentage 
Agreement 

 
    

 
    

Deviation 3 1 .437 1 1 3 1 .697 1 1 

Type I Error 1 1 .940 1 1 1 .943 .850 1 1 

Type II Error -/- -/- -/- -/- -/- -/- -/- -/- -/- -/- 

Effect Size 2 1 1 1 1 1 1 1 1 1 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

The cells in Table 27 with the highest possible value of 1 indicate that the 

measure cannot ensure that the deviation or error rate has no or only weak 

impact on practice. This applies to nearly all target variables and all measures for 

the 95% prediction interval for no practically relevant deviation and error rate. 

This means that even if the measure reaches its highest value, it cannot ensure 

with a certainty of 95% that the deviation and error rates have no practical 

impact on the generated data. For only weak practical impacts, the situation is 

less problematic regarding the 95% interval. In most cases regarding the 

expected values, the measures do not need their maximum value to ensure no 

or only a weak practical impact. 
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Table 28 provides a first suggestion for cut-off values in practice by choosing the 

highest values for the measures. The correct classification of effect sizes is not 

considered in this table as it is a stricter application of the deviation. 

Table 28. Recommendations for Cut-Off Values 

Evaluation Category 

Minimal Satisfactory Good Excellent 

Expectation of 
weak practical 

effect 

Expectation of 
no practical 

effect 

Certainly, only 
a weak 

practical effect 
Certainly, no 

practical effect 

Iota Index .920 1.00* -/- -/- 

Average Iota .693 .847 .875 -/- 

Minimum Iota .623 .785 .812 -/- 

Krippendorff’s Alpha .788 .963 .982 -/- 

Percentage Agreement .940 1.00* -/- -/- 

Note: 
weak practical effect = Deviation less 0.3 and Type I Error less 10%. 
no practical effect = Deviation less 0.1 and Type I Error less 5%. 
* Limit of the Scale reached 

Table 28 shows the minimum values necessary for both variables to ensure no or 

only weak practical impact on the data. For example, a value of .693 for Average 

Iota justifies the expectation that the deviation and the Type I Error rates only 

have a weak practical impact on the data (deviation less 0.3, Type I Error less 

10%). A value of .847 justifies the expectation that deviation and the Type I Error 

rates have no practical effect (deviation less 0.1, Type I Error less 5%) and a value 

of .875 ensures with a certainty of 95% that the deviation and the error rate only 

have a weak practical effect (deviation less 0.3, Type I Error less 10%). Ensuring 

no practical effects with a certainty of 95% is not possible with Average Iota as 

Average Iota must be greater 1, which is not possible.  

The structure for the other measures is similar. No measure provides values 

which can ensure with a certainty of 95% that generated data is practically not 

biased. For the Iota Index and Percentage Agreement, even for a small practical 

effect, there are no values derivable. Figure 21 illustrates the problem. 
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Figure 21. Demands for an Ideal Reliability Measure 

Ideally, a reliability measure would achieve its highest value only if it is certain 

that the generated data is not biased by errors. As Table 28 shows, the necessary 

values for certainty of no practical effect are outside the possible range. 

Computationally, the values must be greater 1. The consequence of the results 

in Table 28 is that the metrics used in the investigated measures of reliability do 

not account for the uncertainty of the reliability estimation itself. High values are 

reached too fast. To achieve an ideal measure as it is shown in Figure 21, “breaks” 

should be integrated to ensure that the values do not increase too quickly. For 

the Iota Index, this aim is realizable by adapting Equation 9, as shown in 

Equation 24.  

 
𝐼𝑜𝑡𝑎𝐼𝑛𝑑𝑒𝑥

𝑑 =
1

(1 −
1
𝑐

)
𝑑

+ (𝑐 − 1) (0 −
1
𝑐

)
𝑑 ∗ ∑ 𝑝𝑖 

∀𝑖

(∑ (|𝑎𝑖𝑗 −
1

𝑐
|)

𝑑

∀𝑗

) , 𝑑 ≥ 1 [24] 

For values of 𝑑 greater 1, the assigned values are lower compared to the normal 

Iota Index. At the same time, the new index is still normalized in the range 

between 0, indicating the absence of reliability, and 1, indicating perfect 

reliability. This frees capacities at the end of the scale for mapping the degree of 

certainty on the scale. The point “certainty of no practical effect” is shifted into 

the possible range of values (see Figure 21). The next simulation study tries to 

prove this idea and to find a suitable value for 𝑑. 
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7 Simulation Study III 

7.1 Design of the Study 

Simulation Study II revealed that the different reliability measures do not 

account for the uncertainty of estimates and predictions. Simulation study III 

takes up this result and tries to transform the Iota Index so that high values imply 

a high certainty that the estimated sample statistics do not deviate from error-

free sample statistics in a range relevant for practice. 

This requires a transformation of the Iota Index that has meaningful end points. 

That is, a value of zero should indicate the absence of reliability while a value of 

one indicates perfect reliability with certainty. In terms of the Iota Concept, this 

implies that zero still must correspond to an Assignment Error Matrix for random 

assignments while the value of one must still correspond to an Assignment Error 

Matrix with maximal distance from random assignments. 

To provide capacities in the range between zero and one for the case of 

uncertainty, the values of the Iota Index should be transformed in a way that is 

more difficult to achieve high values compared to low values. In other words, the 

scale needs a “brake” at the top level of the scale. In the very best case, the 

transformed scale has the same predictive power as the original scale of the Iota 

Index. 

To achieve this aim, two different types of transformations of the Iota Index are 

investigated. Equation 25 shows a static transformation. It represents a 

generalization of the original equation of the Iota Index (Equation 9). Values of 𝑑 

greater one map the generated values to smaller values. At the same time, they 

ensure that the order of the values is the same as for the Iota Index and the scale 

still ranges from zero to one. 

 
𝐼𝑜𝑡𝑎𝐼𝑛𝑑𝑒𝑥

𝑑 =
1

(1 −
1
𝑐

)
𝑑

+ (𝑐 − 1) (0 −
1
𝑐

)
𝑑 ∗ ∑ 𝑝𝑖 

∀𝑖

(∑ (|𝑎𝑖𝑗 −
1

𝑐
|)

𝑑

∀𝑗

) , 𝑑 ≥ 1 [25] 

Equation 26 shows a dynamic transformation. Here, the values of 𝑑𝑑𝑦𝑛 depend 

on the level of the Iota Index. Higher levels of the Iota Index lead to a higher 

exponent which in turn leads to smaller values. The parameter 𝑑𝑑𝑦𝑛 controls 

where the “brake” should affect the scale. For example, 



Iota Reliability Concept of the Second Generation  

 

86 

𝑑𝑑𝑦𝑛 = 0.5 decreases the value from the very beginning of the scale while 

𝑑𝑑𝑦𝑛 = 2 compresses the value later.  

 𝐼𝑜𝑡𝑎
𝐼𝑛𝑑𝑒𝑥

𝑑𝑑𝑦𝑛
= (𝐼𝑜𝑡𝑎 𝐼𝑛𝑑𝑒𝑥)1+(𝐼𝑜𝑡𝑎 𝐼𝑛𝑑𝑒𝑥)

𝑑𝑑𝑦𝑛
, 𝑑𝑑𝑦𝑛 > 0 [26] 

Since the static transformation makes a recalculation necessary, the simulation 

from study II is repeated with the same configuration. The static transformation 

of the Iota Index is done for 𝑑 = 1.5, 2, 3, 4. For the dynamic transformation, 𝑑 

is either 0.5 or 2. The following section reports the results. 

7.2 Results of Simulation Study III 

7.2.1 Overview 

In the third simulation study, 5,925,743 coding processes are simulated which 

are nested in 197,525 processes for reliability estimation. Both processes are 

based on 24,910 sets of true parameters. Table 29 shows the distribution of the 

processes to nominal and ordinal data as well as to different strengths of true 

association/correlation.  

Table 29. Sample Size of Simulation Study III 

Nominal Data 

 No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Set of True Parameters 1,741 2,191 1,828 4,197 2,518 

𝑁𝐵𝑒𝑡𝑤𝑒𝑒𝑛 
(Reliability Estimation) 13,807 17,340 14,496 33,368 19,971 

𝑁𝑊𝑖𝑡ℎ𝑖𝑛 
(Coding Processes) 414,210 520,199 434,880 1,001,040 599,124 

Ordinal Data 

 No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Set of True Parameters 2,741 2,851 2,592 1,821 2,430 

𝑁𝐵𝑒𝑡𝑤𝑒𝑒𝑛 
(Reliability Estimation) 21,697 22,595 20,538 14,453 19,260 

𝑁𝑊𝑖𝑡ℎ𝑖𝑛 
(Coding Processes) 650,910 677,850 616,140 433,590 577,800 

Appendix D presents values for assessing the global model fit. All models could 

be successfully estimated, except some models for the correct classification of 

effect sizes for a perfect and strong relationship. Thus, these models cannot be 

considered in the following analysis. The reaming models show a global model fit 

according to the criteria developed by Hu and Bentler (1999). There are only two 

exceptions concerning the CFI. The models for the Iota Index and its dynamic 

transformation with 𝑑𝑑𝑦𝑛 = 2 show values below .950 for the correct 
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classification of effect sizes in ordinal data for the condition of practically no 

relationship. Since RMSEA and SRMR are in line with the combination rule of Hu 

and Bentler (1999), both models remain part of the analysis. Table 30 reports the 

values for 𝑅² for the Iota Index and its transformations.  

Table 30. 𝑅𝐿𝑒𝑣𝑙 1 𝑜𝑛𝑙𝑦
2  for Prediction of the Average Deviation and Error Rates 

Nominal Data 

Deviation 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .114 .189 .415 .552 .778 

𝑑 = 1.5 .097 .162 .377 .528 .770 

𝑑 = 2.0 .082 .137 .338 .496 .740 

𝑑 = 3.0 .062 .108 .280 .440 .673 

𝑑 = 4.0 .054 .095 .248 .402 .620 
𝑑𝑑𝑦𝑛 = 0.5 .091 .155 .360 .514 .748 
𝑑𝑑𝑦𝑛 = 2.0 .106 .178 .395 .535 .764 

Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .064 .699 .747 .722 .654 

𝑑 = 1.5 .058 .685 .722 .687 .606 

𝑑 = 2.0 .051 .657 .683 .638 .530 

𝑑 = 3.0 .042 .595 .605 .550 .412 

𝑑 = 4.0 .037 .544 .545 .487 .325 
𝑑𝑑𝑦𝑛 = 0.5 .056 .659 .684 .656 .570 
𝑑𝑑𝑦𝑛 = 2.0 .061 .680 .719 .699 .634 

Effect Size 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .003 .476 .556 .721  

𝑑 = 1.5 .007 .439 .54 .676  

𝑑 = 2.0 .011 .399 .519 .639  

𝑑 = 3.0 .018 .343 .481   

𝑑 = 4.0 .020 .311 .453   
𝑑𝑑𝑦𝑛 = 0.5 .008 .430 .534 .655  
𝑑𝑑𝑦𝑛 = 2.0 .004 .458 .551 .684  
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Table 16. 𝑅𝐿𝑒𝑣𝑙 1 𝑜𝑛𝑙𝑦
2  for Prediction Average Deviation and Error Rates 

(Continue) 

Ordinal Data 

Deviation 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .271 .398 .607 .679 .704 

𝑑 = 1.5 .277 .400 .615 .686 .714 

𝑑 = 2.0 .273 .309 .602 .607 .699 

𝑑 = 3.0 .256 .359 .558 .619 .649 

𝑑 = 4.0 .239 .331 .516 .571 .601 
𝑑𝑑𝑦𝑛 = 0.5 .271 .388 .600 .666 .696 
𝑑𝑑𝑦𝑛 = 2.0 .271 .392 .603 .672 .699 

Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .084 .660 .683 .657 .609 

𝑑 = 1.5 .096 .648 .670 .648 .601 

𝑑 = 2.0 .102 .618 .638 .619 .566 

𝑑 = 3.0 .107 .554 .567 .551 .474 

𝑑 = 4.0 .106 .503 .511 .492 .402 
𝑑𝑑𝑦𝑛 = 0.5 .098 .618 .641 .618 .561 
𝑑𝑑𝑦𝑛 = 2.0 .092 .635 .662 .637 .600 

Effect Size 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index .006 .479 .627 .82  

𝑑 = 1.5 .006 .488 .612 .781 .591 

𝑑 = 2.0 .006 .482 .591 .751  

𝑑 = 3.0 .006 .455 .549 .701 .385 

𝑑 = 4.0 .006 .424 .508 .656  
𝑑𝑑𝑦𝑛 = 0.5 .007 .477 .593 .752 .612 
𝑑𝑑𝑦𝑛 = 2.0 .007 .476 .608 .771  

Table 30 emphasizes that the static transformations lead to lower values for 𝑅² 

in all cases. 𝑅² decreases for stronger brakes. That is, for higher values of 𝑑. 

Similar applies for the dynamic transformations but the values for 𝑅² are very 

close to the ones from the original Iota Index. Thus, the dynamic transformations 

are closely connected to the quality of the data. The following sections derive the 

corresponding cut-off values and prediction intervals. 
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7.2.2 Potential Cut-off Values and Certainty of Reliability Effects for Deviation 

Table 31 reports the necessary values for achieving a specific deviation between 

true and estimated sample association/correlation for different degrees of 

certainty.  

First, for the static and the dynamic transformations, the necessary values are 

lower compared to the original Iota Index. For example, achieving an expected 

deviation of less than 0.1 for nominal data with a strong true association requires 

a Iota Index value of .829, while for Iota Index (𝑑 = 4) a value of .627 is sufficient. 

Second, the different versions of transformation of the Iota Index decrease the 

values but they do not provide clear cut-off values for a certainty of 95% under 

the condition of perfect relationships. The only exception is the static 

transformation with 𝑑 = 4, which provides a clear cut-off value for nominal data. 

In order to provide insights into how certainly the maximal value of the scales 

are associated with specific effects, Table 32 reports the corresponding 

probabilities for no and only a weak practical deviation. 
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Table 31. Potential Cut-Off Values for Deviation 

  Nominal Ordinal 

 
 Expected 

Deviation 95% Interval 
Expected 
Deviation 95% Interval 

  less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 

Iota Index 0 0 0 0 0 0 0 .664 0 
 1 .421 0 1 0 .771 0 1 .343 
 2 .829 .241 1 .650 .997 .557 1 .839 
 3 .954 .605 1 .882 1 .757 1 .981 
 4 1 .932 1 1 1 .967 1 1 

𝑑 = 1.5 0 0 0 0 0 0 0 .575 0 
 1 .301 0 1 0 .694 0 1 .229 
 2 .769 .107 1 .580 .937 .462 1 .763 

 3 .904 .510 1 .829 1 .678 1 .918 
 4 1 .870 1 1 1 .905 1 1 

𝑑 = 2.0 0 0 0 0 0 0 0 .51 0 
 1 .211 0 1 0 .637 0 1 .150 
 2 .728 .008 1 .536 .889 .392 1 .712 
 3 .865 .440 1 .795 .957 .62 1 .876 
 4 1 .823 1 1 1 .858 1 1 

𝑑 = 3.0 0 0 0 0 0 0 0 .427 0 
 1 .093 0 1 0 .557 0 1 .053 
 2 .670 0 1 .48 .821 .3 1 .649 
 3 .807 .346 1 .75 .897 .539 1 .828 
 4 .983 .755 1 1 1 .792 1 1 

𝑑 = 4.0 0 0 0 0 0 0 0 .376 0 

 1 .028 0 1 0 .506 0 1 0 
 2 .627 0 1 .442 .773 .243 1 .612 
 3 .762 .289 1 .716 .853 .488 1 .799 
 4 .937 .706 1 .976 .964 .746 1 1 

𝑑𝑑𝑦𝑛 = 0.5 0 0 0 0 0 0 0 .529 0 
 1 .258 0 1 0 .647 0 1 .190 
 2 .724 .063 1 .541 .884 .418 1 .718 
 3 .853 .464 1 .784 .951 .631 1 .875 
 4 1 .819 1 1 1 .856 1 1 

𝑑𝑑𝑦𝑛 = 2.0 0 0 0 0 0 0 0 .59 0 
 1 .360 0 1 0 .693 0 1 .291 
 2 .752 .189 1 .586 .904 .491 1 .756 

 3 .868 .534 1 .804 .961 .680 1 .893 
 4 1 .843 1 1 1 .878 1 1 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship, 
4 = perfect relationship. 
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Table 32. Certainty at the End of the Scale for Deviation 

  Nominal Ordinal 

  less 0.1 less 0.3 less 0.1 less 0.3 

Iota Index 0 1.000 1.000 .986 1.000 
 1 .906 1.000 .794 1.000 
 2 .755 .999 .507 .995 
 3 .608 .991 .343 .963 
 4 .126 .747 .119 .608 

𝑑 = 1.5 0 1.000 1.000 .989 1.000 
 1 .910 1.000 .844 1.000 
 2 .789 .999 .635 .999 
 3 .691 .994 .499 .987 
 4 .260 .872 .227 .766 

𝑑 = 2.0 0 1.000 1.000 .991 1.000 
 1 .909 1.000 .872 1.000 
 2 .802 .999 .716 .999 
 3 .734 .995 .608 .993 
 4 .383 .917 .333 .843 

𝑑 = 3.0 0 1.000 1.000 .993 1.000 
 1 .908 1.000 .901 1.000 
 2 .817 .999 .801 1.000 
 3 .784 .996 .722 .996 
 4 .546 .948 .486 .904 

𝑑 = 4.0 0 1.000 1.000 .994 1.000 
 1 .913 1.000 .918 1.000 
 2 .833 .999 .845 1.000 

 3 .821 .997 .781 .997 
 4 .649 .964 .581 .928 

𝑑𝑑𝑦𝑛 = 0.5 0 1.000 1.000 .991 1.000 
 1 .923 1.000 .880 1.000 
 2 .829 1.000 .737 .999 
 3 .775 .997 .630 .994 
 4 .433 .938 .363 .861 

𝑑𝑑𝑦𝑛 = 2.0 0 1.000 1.000 .991 1.000 
 1 .933 1.000 .877 1.000 
 2 .849 1.000 .725 .999 
 3 .789 .998 .617 .993 
 4 .426 .943 .346 .851 

Table 32 shows that on their highest values the certainty to ensure no or only a 

weak practical deviation is very different for the different kinds of 

transformations. For example, in the case of nominal data and a strong 

association, a value of “1” for the original Iota Index implies that in about 60.8% 

of cases, the deviation has no practical relevant size. For the static 

transformation of the Iota Index with 𝑑 = 4, “1” implies that the estimated and 
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true sample associations deviate with no practically relevant size with a certainty 

of 82.1%. For the dynamic transformation with 𝑑𝑑𝑦𝑛 = 2, the certainty is about 

78.9%. Thus, the transformations increase the certainty at the end of the scale 

meaningfully compared to the original Iota Index. The dynamic brakes perform 

similarly well as the static brake with 𝑑 = 4. Only in case of perfect true 

relationships the static transformation with 𝑑 = 3 or 𝑑 = 4 performs better.  

7.2.3 Potential Cut-off Values and Certainty of Reliability Effects for Type I 
Errors 

Table 33 reports the potential cut-off values for the risk of Type I Errors. Again, 

the transformations lead to lower necessary cut-off values. Compared to the 

original Iota Index, all static transformations with at least 𝑑 = 2 and both 

dynamic transformations provide a clear cut-off value for the 95% prediction 

interval for only weak practical deviations under the condition of weak 

relationships. For no practical effects, a clear cut-off value on the 95% prediction 

interval does not exist for the different transformations of the Iota Index.  
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Table 33. Potential Cut-Off Values for Type I Errors 

  Nominal Ordinal 

  Expected Deviation 95% Interval Expected Deviation 95% Interval 

  less 5% less 10% less 5% less 10% less 5% less 10% less 5% less 10% 

Iota Index 0 .837 .514 1 1 1 .786 1 1 

 1 .998 .915 1 1 .912 .851 1 .96 

 2 .796 .749 .872 .825 .729 .69 .796 .756 

 3 .625 .591 .672 .638 .643 .608 .698 .663 

 4 .484 .455 .519 .49 .557 .527 .605 .575 

𝑑 = 1.5 0 .779 .417 1 1 .967 .697 1 1 

 1 .943 .852 1 1 .848 .782 .969 .903 

 2 .719 .669 .803 .753 .643 .6 .716 .673 

 3 .525 .488 .578 .54 .548 .511 .607 .571 

 4 .371 .34 .409 .379 .455 .423 .506 .474 

𝑑 = 2.0 0 .740 .346 1 1 .898 .629 1 1 

 1 .899 .803 1 .995 .798 .729 .929 .859 

 2 .661 .609 .751 .699 .578 .534 .656 .612 

 3 .451 .412 .509 .469 .477 .439 .54 .502 

 4 .282 .248 .327 .293 .379 .345 .433 .399 

𝑑 = 3.0 0 .686 .252 1 1 .802 .535 1 1 

 1 .835 .734 1 .939 .728 .654 .871 .797 

 2 .582 .528 .681 .626 .491 .444 .576 .53 

 3 .355 .312 .419 .377 .383 .344 .451 .412 

 4 .162 .124 .215 .178 .274 .237 .335 .298 

𝑑 = 4.0 0 .645 .195 1 1 .738 .476 1 1 

 1 .790 .686 1 .898 .679 .604 .828 .753 

 2 .531 .476 .635 .579 .436 .389 .524 .477 

 3 .296 .252 .365 .321 .325 .284 .397 .356 

 4 .081 .040 .142 .101 .203 .165 .271 .232 

𝑑𝑑𝑦𝑛 = 0.5 0 .731 .374 1 1 .903 .644 1 1 

 1 .893 .803 1 .983 .798 .733 .921 .855 

 2 .670 .620 .755 .706 .592 .55 .664 .623 

 3 .476 .439 .528 .491 .497 .462 .556 .521 

 4 .322 .292 .361 .331 .406 .373 .458 .425 

𝑑𝑑𝑦𝑛 = 2.0 0 .759 .452 1 1 .935 .698 1 1 

 1 .908 .829 1 .985 .825 .768 .931 .874 

 2 .713 .670 .786 .743 .648 .611 .710 .673 

 3 .548 .517 .592 .561 .566 .534 .618 .586 

 4 .418 .392 .450 .424 .486 .458 .530 .502 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship,  
4 = perfect relationship. 

To provide insights into the certainty at the end of the scales, Table 34 reports 

the corresponding probabilities for ensuring that the risk of Type I Errors does 

not exceed a specific value (5% or 10%). 
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Table 34. Certainty at the End of the Scale for Type I Errors 

  Nominal Ordinal 

  less 5% less 10% less 5% less 10% 

Iota Index 0 .666 .899 .440 .739 

 1 .507 .804 .909 .988 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑 = 1.5 0 .697 .914 .539 .814 

 1 .697 .912 .981 .999 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑 = 2.0 0 .712 .920 .618 .863 

 1 .806 .955 .995 1.000 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑 = 3.0 0 .729 .927 .723 .917 

 1 .907 .984 .999 1.000 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑 = 4.0 0 .747 .935 .787 .944 

 1 .949 .993 1.000 1.000 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑𝑑𝑦𝑛 = 0.5 0 .739 .931 .617 .862 

 1 .835 .964 .997 1.000 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

𝑑𝑑𝑦𝑛 = 2.0 0 .747 .935 .586 .843 

 1 .834 .964 .997 1.000 

 2 1.000 1.000 1.000 1.000 

 3 1.000 1.000 1.000 1.000 

 4 1.000 1.000 1.000 1.000 

Again, the transformed values increase the certainty at the end of the scale 

meaningfully. For example, under the condition of practically no correlation and 

ordinal data, “1” implies with a certainty of 40% that the risk for Type I Errors is 

below 5% for the original Iota Index. For the static transformation with 𝑑 = 4, 

“1” implies with a certainty of 72.3% and for the dynamic transformation with 

𝑑𝑑𝑦𝑛 = 2 of 58.6% that the risk for Type I Errors is below 5%. 
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7.2.4 Potential Cut-off Values and Certainty of Reliability Effects for Classifying 
Effect Sizes 

Table 35 reports the cut-off values for the correct classification of the effect sizes. 

Similar to simulation study II, the results imply the need for very high values to 

correctly classify the effect size. Here, the static brakes for 𝑑 = 3 and 𝑑 = 4 do 

not provide models for predicting the chance for a correct classification under 

the condition of strong practical effects.  

New clear cut-off values compared to the original Iota Index do appear only for 

the dynamic brake with 𝑑𝑑𝑦𝑛 = 2 in the case of nominal data and for ordinal 

data. However, according to Table 36, the certainty to correctly classify the effect 

sizes increases for all transformations compared to the original Iota Index. For 

example, for nominal data and the absence of a practical relevant association, 

the highest value of the original Iota Index guarantees with a certainty of 13.6% 

that the chance to correctly classify the effect size is at least 90%. For the static 

brake with 𝑑 = 4, this certainty increases to 30.4%. The following section 

summarizes the results. 
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Table 35. Potential Cut-Off Values for a Correct Classification of Effect Sizes 

  Nominal Ordinal 

 
 Expected 

Deviation 95% Interval 
Expected 
Deviation 95% Interval 

  less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 less 0.1 less 0.3 

Iota Index 0 1 1 1 1 1 .577 1 1 
 1 .988 .895 1 1 1 1 1 1 
 2 1 1 1 1 1 1 1 1 
 3 .934 .908 .972 .945 1 1 1 1 
 4         

𝑑 = 1.5 0 1 1 1 1 1 .484 1 1 
 1 .948 .843 1 1 1 .952 1 1 
 2 1 1 1 1 1 1 1 1 

 3 .896 .863 .941 .909 1 1 1 1 
 4     .733 .724 .744 .735 

𝑑 = 2.0 0 1 1 1 1 1 .416 1 1 
 1 .919 .805 1 1 .986 .905 1 1 
 2 1 1 1 1 1 1 1 1 
 3 .859 .823 .91 .874 1 .991 1 1 
 4         

𝑑 = 3.0 0 1 1 1 1 1 .325 1 1 
 1 .873 .749 1 1 .920 .835 1 .987 
 2 1 1 1 1 1 1 1 1 
 3     .988 .953 1 .977 
 4     .612 .6 .628 .616 

𝑑 = 4.0 0 1 1 1 1 1 .27 1 1 

 1 .832 .705 1 .968 .871 .785 1 .941 
 2 1 1 1 1 1 .961 1 1 
 3     .957 .919 .982 .944 
 4         

𝑑𝑑𝑦𝑛 = 0.5 0 1 1 1 1 1 .440 1 1 
 1 .896 .792 1 1 .977 .901 1 1 
 2 1 1 1 1 1 1 1 1 
 3 .852 .819 .9 .866 1 .981 1 1 
 4     .684 .676 .696 .687 

𝑑𝑑𝑦𝑛 = 2.0 0 1 1 1 1 1 .511 1 1 
 1 .902 .813 1 .991 .985 .917 1 1 
 2 1 1 1 1 1 1 1 1 

 3 .856 .828 .894 .867 .996 .972 1 .988 
 4         

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship, 
4 = perfect relationship. 
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Table 36. Certainty at the End of the Scale for a Correct Classification of Effect 
Sizes 

  Nominal Ordinal 

 
 

less 5% 
less 
10% less 5% 

less 
10% 

Iota Index 0 .022 .136 .214 .686 
 1 .543 .825 .144 .451 
 2 .000 .000 .000 .000 
 3 .998 1.000 .000 .006 
 4     

𝑑 = 1.5 0 .031 .169 .234 .709 
 1 .658 .890 .361 .720 
 2 .000 .005 .000 .008 

 3 1.000 1.000 .000 .231 
 4   1.000 1.000 

𝑑 = 2.0 0 .041 .205 .250 .727 
 1 .719 .918 .564 .863 
 2 .000 .027 .001 .072 
 3 1.000 1.000 .043 .774 
 4     

𝑑 = 3.0 0 .061 .265 .278 .754 
 1 .795 .948 .808 .963 
 2 .010 .163 .052 .488 
 3   .796 1.000 
 4   1.000 1.000 

𝑑 = 4.0 0 .077 .304 .304 .777 

 1 .854 .968 .913 .988 
 2 .065 .425 .282 .842 
 3   .998 1.000 
 4     

𝑑𝑑𝑦𝑛 = 0.5 0 .036 .188 .257 .734 
 1 .795 .950 .610 .887 
 2 .001 .054 .004 .145 
 3 1.000 1.000 .208 .952 
 4   1.000 1.000 

𝑑𝑑𝑦𝑛 = 2.0 0 .028 .161 .255 .732 
 1 .817 .958 .584 .874 
 2 .002 .065 .007 .197 

 3 1.000 1.000 .645 .998 
 4     

7.3 Summary of Simulation Study III 

Introducing different transformations of the Iota Index leads to a more effective 

use of the range between zero and one. In every case, the necessary cut-of values 

decreased compared to the original Iota Index. In some cases, even a clear cut-
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off value occurred that ensures with a certainty of 95% that the deviation does 

not exceed a small practical effect. Although the transformations are not able to 

provide a clear cut-off value ensuring no practical effect with a certainty of 95%, 

the chance for no practical effect increased meaningfully. Thus, the 

transformations are partly successful. 

Choosing the best transformation is a difficult task. The static transformations 

provide higher certainty at the end of the scale compared to the dynamic 

transformations. In contrast, the dynamic transformations show higher values 

for 𝑅² compared to the static transformations. Thus, the dynamic 

transformations are more connected to the quality of the data. To decide about 

the “best” transformation, Table 37 summarizes the cut-off values by showing 

the highest necessary values for deviation and Type I Errors for the practical 

relevant range of true associations/correlations. The values for the correct 

classification of effect sizes are not considered since they do not provide hints 

for good cut-off values. Values in brackets show the probability that an 

observation is in line with no or only a weak practical effect. 

Table 37. Summary of Cut-Off Values 

  Nominal  Ordinal 

  Expected Effect 95% Interval  Expected Deviation 95% Interval 

 
 No 

practical 
Weak 

practical 
No 

practical 
Weak 

practical 
 No 

practical 
Weak 

practical 
No 

practical 
Weak 

practical 

𝑑 = 1.5           

Deviation 3 0.904 0.510 1 (.691) 0.829 3 1 0.678 1 (.499) 0.918 

Type I Error 1 0.943 0.852 1 (.697) 1 (.912) 1 0.848 0.782 0.969 0.903 

𝑑 = 2.0           

Deviation 3 0.865 0.440 1 (.734) 0.795 3 0.957 0.62 1 (.608) 0.876 

Type I Error 1 0.899 0.803 1 (.806) 0.995 1 0.798 0.729 0.929 0.859 

𝑑 = 3.0           

Deviation 3 0.807 0.346 1 (.784) 0.750 3 0.897 0.539 1 (.722) 0.828 

Type I Error 1 0.835 0.734 1 (.907) 0.939 1 0.728 0.654 0.871 0.797 

𝑑 = 4.0           

Deviation 3 0.762 0.289 1 (.821) 0.716 3 0.853 0.488 1 (.781) 0.799 

Type I Error 1 0.790 0.686 1 (.949) 0.898 1 0.679 0.604 0.828 0.753 

𝑑𝑑𝑦𝑛 = 0.5           

Deviation 3 0.853 0.464 1 (.775) 0.784 3 0.951 0.631 1 (.630) 0.875 

Type I Error 1 0.893 0.803 1 (.835) 0.983 1 0.798 0.733 0.921 0.855 

𝑑𝑑𝑦𝑛 = 2.0           

Deviation 3 0.868 0.534 1 (.789) 0.804 3 0.961 0.680 1 (.617) 0.893 

Type I Error 1 0.908 0.829 1 (.834) 0.985 1 0.825 0.768 0.931 0.874 

0 = no true relationship, 1 = weak relationship, 2 = medium relationship, 3 = strong relationship, 4 = perfect relationship. 
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Weighting the values for 𝑅² on the one hand and the certainty at the end of the 

scale on the other hand, two transformations are plausible. The static 

transformation with 𝑑 = 4 provides a very high certainty at the end of the scale. 

For example, the chance that the risk for Type I Errors to be less than 5% is 94.9% 

for nominal data and thus a weak association. The dynamic transformation with 

𝑑𝑑𝑦𝑛 = 2 shows a weaker certainty but provides a good compromise between 

certainty and values of R². Table 38 summarizes the cut-off values. 

Table 38. Recommendation for Cut-Off Values 

Evaluation Category 

Minimal Satisfactory Good Excellent 

Expectation of 
weak practical 

effect 

Expectation of 
no practical 

effect 

Certainly, only 
a weak 

practical effect 
Certainly, no 

practical effect 

Iota Index (𝑑 = 4) .686 .853 .898 1* 

Iota Index (𝑑𝑑𝑦𝑛 = 2) .829 .961 .985 1* 

Note: 
weak practical effect = Deviation less 0.3 and Type I Error less 10%. 
no practical effect = Deviation less 0.1 and Type I Error less 5%. 
* Limit of the Scale reached 

The cut-off values in Table 38 ensure that even under the most demanding 

conditions, the expected deviation between the true and estimated sample 

statistics have no or only a small effect on the subsequent analysis. Furthermore, 

higher values ensure with a high certainty that the quality of the data is in line 

with small deviations. 

Even the correct classification of effect sizes is partly covered by these cut-off 

values. For example, the value of .961 for the Iota Index (𝑑𝑑𝑦𝑛 = 2) leads to the 

expectation that the chance for correctly classifying the effect size is about 74% 

for nominal data and a medium true association. A value of .985 leads to the 

expectation of 78%. The following section discusses the results.  
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8 Discussion 

8.1 Conclusions 

Content analysis is a popular method in research and a valuable tool in practical 

settings. The quality of a content analysis is crucial regardless whether it may be 

in research or in practice as the generated data forms the basis to deduct 

conclusions and make data-driven decisions. The same quality criteria apply to 

content analysis, no matter if it is employed in research or in practice (Hesse & 

Latzko, 2011, p. 70; Ingenkamp & Lissmann, 2008, p. 51). Generally, these are 

objectivity, reliability and validity.  

This book focuses on the criterion of reliability that describes the extent to which 

an instrument produces error-free data (Schreier, 2012, pp. 166–167). That is the 

degree to which “a process can be reproduced by different analysts, working 

under varying conditions, at different locations, or using different but 

functionally equivalent measuring instruments” (Krippendorff, 2019, p. 281).  

In summary, this book provides an updated version of the Iota Reliability Concept 

which was first described by Berding et al. (2022). The updated concept 

contributes to the methodology and field of content analysis on the one hand by 

improving the Iota Concept and on the other hand by adding new opportunities 

of analyses to the field. To be more specific, the updated concept provides the 

following progressions. 

Applying Maximum Likelihood Estimation 

While the first version of the Iota Concept relied on a direct computation from 

raw data, the new version uses techniques of Maximum Likelihood Estimation, 

which is inspired by latent class analysis (Andreß et al., 1997). The estimation 

algorithm uses an EM algorithm and adds a third stage that transforms the 

Assignment Error Matrix into a structure that is in line with the assumption of 

weak superiority. The first simulation study showed that this algorithm is able to 

produce suitable estimates for further applications in practice or research. The 

estimates in particular are more accurate for coding schemes with a high true 

reliability than for coding schemes with a low true reliability.  

The first simulation study also provides evidence that the new algorithm 

produces more accurate estimates for an increasing number of raters and an 

increasing sample size. This is an important difference to Krippendorff’s Alpha, 
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Average Iota and Minimum Iota, which do not perform as well in these cases, 

since the values are independent from sample size and the number of raters 

(Berding et al., 2022). The new concept uses the additional information from 

both an increased number of raters and a larger sample size to produce more 

accurate results as a consequence. 

Providing Insight into the Reliability of Every Single Category.  

Previous measures often used in content analysis such as Krippendorff’s Alpha, 

Percentage Agreement, Scott’s Pi and Cohen’s Kappa (Lovejoy et al., 2016) 

describe the reliability of a scale with one single numeric value, assuming that 

the reliability is constant across the entire scale (Feng and Zhao, 2016). The Iota 

Concept of the first generation is based on the basic ideas of modern test theory 

(Ayala, 2009; Baker and Kim, 2017; Bonifay, 2020; Paek and Cole, 2020) and 

overcomes this limitation (Berding et al., 2022). While with the current 

measures, the different reliabilities in the distinct categories could not be 

concluded separately, it is now possible to depict the differences between the 

unique categories through calculating Alpha and Beta Elements as well as Iota.  

The new version of the Iota Reliability Concept refines the first generation by 

redefining the Alpha Elements, Beta Elements, Assignment Error Matrix and by 

introducing a new definition of Iota. Thus, the updated concept implements its 

core assumptions with a clearer mathematical framework and enables a more 

straightforward interpretation of its results. The redefined Iota concept offers 

more detailed insight into a) the reliability of every single category than the first 

version and b) how the data generated by a coding scheme actually reflects the 

underlying true categories.  

Providing Insights into the Production of Bias for Different Groups of 

Individuals/Materials Through a Coding Scheme.  

The first version of the Iota Concept provides the possibility to analyze whether 

or not a coding scheme functions similarly for different groups of participants or 

materials (Berding et al., 2022, p. 18). That is, it allows to investigate if a coding 

scheme guides raters similarly for different groups of participants/materials. The 

redefinition of the Assignment Error Matrix allows a more straightforward way 

to do this.  
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Providing Rules of Thumb for Evaluating Content Analysis.  

In the study that developed the first generation of the Iota Concept (Berding et 

al., 2022), cut-off values were derived based on the assumption that the second 

variable is measured with perfect reliability and that the level of reliability is 

equal for all categories. Furthermore, only ordinal data was considered. The 

current study addresses these limitations by varying the degree for reliability 

between the categories, by allowing different levels of reliability for both 

independent and dependent variables and by considering nominal and ordinal 

data. Additionally, the analysis focusses on a range of practically relevant 

strength of associations/correlations based on Cohen (1988) and uses different 

target variables to describe the quality of the generated data (deviation between 

true and estimated sample association/correlation, risk of Type I Errors, chance 

for correct classification of effect sizes). 

The results of the second simulation study show that the predictive power of 

Average Iota and Minimum Iota is weaker under the condition of varying true 

reliability (in every category as well as for both independent and dependent 

variable) as in the study conducted by Berding et al. (2022). In the study of 

Berding et al. (2022), Average Iota performed similarly to Krippendorff’s Alpha. 

In the current study, Average Iota and Minimum Iota perform better than 

Percentage Agreement but worse compared to Krippendorff’s Alpha. 

In contrast, the new Iota Index performs significantly better than Average Iota 

and Minimum Iota for all kinds of data quality (deviation, Type I Error, correct 

classification of effect sizes). The Iota Index also performs similarly to 

Krippendorff’s Alpha and in some situations even better. Thus, the new concept 

is an actual improvement compared to the first generation. 

The predictive power of the measures has a direct impact on the cut-off values 

for practical applications since a higher predictive power is associated with a 

smaller prediction interval. The second simulation study shows that for each 

scale value, the expected deviation from the true sample statistics can be 

predicted and cut-off values can be derived. The resulting cut-off values are 

higher than reported in the literature. For example, Krippendorff (2019, p. 356) 

recommends a value for Krippendorff’s Alpha of .667 as minimal, of .800 as 

sufficient and of 1.00 as ideal for judging the quality of codings. These values 

were replicated and proven in the study by Berding et al. (2022). However, the 
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present study, which contains more realistic assumptions, implies that these cut-

off vales are too low. In contrast, the analysis in study II showed that a value of 

at least.788 is necessary to justify the expectation of only a weak practical effect 

on the data. In consequence, a value of at least .963 is necessary to expect no 

practical effect. The certainty of these expectations is not considered in these 

values, as a required certainty of 95% implies that the values must be even 

higher, thus exceeding the possible range of values (the values must be greater 

1). This implies that even a perfect value of Krippendorff’s Alpha does not 

guarantee error-free data although the high values suggest an error-free 

measurement. Thus, these measures should be used with caution.  

The like applies to Average Iota and Minimum Iota. The study of Berding et al. 

(2022, p. 17) recommend a minimum value of .474 for Average Iota and of .377 

for Minimum Iota for a deviation of not more than .20. To achieve a deviation 

not exceeding .10, the recommended value for Average Iota is about .601 and 

about .478 for Minimum Iota. To achieve a deviation not exceeding .10, the 

current study suggests a value of at least .847 for Average Iota and of .785 for 

Minimum Iota. If the effect needs to be 95% certain, the values will exceed the 

possible range of values. A similar problem occurred for the Iota Index of the 

updated Iota Concept. 

Thus, the currently used cut-off values do not consider that all involved variables 

vary in their reliability and that the reliability measures themselves are estimates 

that suffer from estimation errors. As a consequence, the metric of the measures 

should be constructed in a way that ensures that high values indeed indicate 

reliability. This would be the case if they guarantee low to no bias in the 

generated data with a high certainty. 

The third simulation study addresses this issue by building in “brakes”, or freeing 

capacities at the end of the scale to account for this degree of certainty. The third 

simulation study revealed two transformations of the original Iota Index. Both 

transformations revealed cut-off values that ensure with a certainty of 95% that 

the generated data suffers only from small practical effects. Generating cut-off 

values ensuring no practical relevant effects (error-free data) was not successful. 

Thus, this issue should be addressed in further research. A possible starting point 

could be the development of more precise estimation methods which may 

reduce the width of the prediction interval leading to clear cut-off values. 
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Another starting point could be the adaption of existing measures or the 

development of new measures of inter-rater reliability. 

Additional Opportunities of Analysis  

The updated version of the Iota Concept provides additional opportunities for 

content analysis that are not possible with the first generation. For example, the 

current measures such as Percentage Agreement, Krippendorff’s Alpha and Iota 

of the first generation provide no answer on how to train and assess a new rater 

on the basis of an evaluated coding scheme, which would be important as 

research focuses on the development of new coding schemes (Früh, 2017, 

p. 185; Krippendorff, 2019, p. 394; Kuckartz, 2018, p. 95; Mayring, 2015, pp. 10–

109; Schreier, 2012, pp. 152–165).  

Moreover, the updated Iota Concept allows the application of an error correction 

based on the Assignment Error Matrix, which uses information provided by at 

least two raters. This improves the quality of the data and contributes to close 

the gap to latent modeling, ultimately allowing researchers to control for 

measurement errors (Geiser, 2013, p. 40; Wang & Wang, 2020, p. 1). The next 

section illustrates these new opportunities. 

8.2 Examples for Practical Applications of iotarelr 

8.2.1 Overview 

Simultaneously to analyzing the new Iota Reliability Concept, an R package called 

iotarelr is being developed. The package aims to provide a convenient use of both 

the old and the new reliability concepts as it implements all calculations 

presented in this paper and offers an easy way to estimate the different reliability 

measures. Besides this basic functionality, the package provides additional tools 

to analyze the quality of a content analysis. These are 

• tools to visualize the results similarly to Figure 4, 

• tools to analyze if the coding scheme works similarly for different subgroups 

of materials/participants, 

• tools to check the quality of new raters’ coding and 

• tools to increase the data quality for core studies. 

The package is currently available on github. A release to CRAN is planned as this 

book is in its final realization stages. The packages’ homepage is accessible via 
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https://fberding.github.io/iotarelr/ that contains the latest version, news and 

tutorials as well as sample applications for Iota Reliability in R. Some examples 

for the application of the Iota Reliability Concept in practice will be discussed in 

the following sections. 

8.2.2 Checking the Quality of Codings of New Raters 

Most scientific studies include the development of a new coding scheme for their 

study which is typically the focus of literature that introduces content analysis 

(Krippendorff, 2019; Kuckartz, 2018; Mayring, 2015; Schreier, 2012). In these 

cases, the reliability can be estimated and analyzed as described in Chapter 3. 

When shifting to the application of existing coding schemes (from earlier studies 

or other sources), however, there is less applicable literature. In these cases, the 

challenge is not to develop a new coding scheme, but to apply an existing one to 

new data, often along with new raters.  

Researchers may choose to apply an existing coding scheme due to several 

reasons. First, studies using the same coding scheme can be directly compared, 

ultimately contributing to knowledge accumulation regarding a specific topic or 

discipline. Second, the application of an existing coding scheme provides the 

opportunity to prove results of prior studies by trying to reproduce them. Third, 

using an existing scheme saves resources, since ideally, the improvement cycle 

for developing (Früh, 2017, p. 185; Krippendorff, 2019, p. 394; Kuckartz, 2018, 

p. 95; Mayring, 2015, pp. 10–109; Schreier, 2012, pp. 152–165) is not necessary. 

This saves capacities which become available for other aspects in the course of 

the study (greater sample sizes, refining specific categories, considering more 

categories etc.).  

Estimating the reliability of codings based on an existing coding scheme differs 

from developing an own coding scheme. To be specific, the development phase 

aims to provide a theoretically and empirically sound guide for data analysis. For 

that it is essential that researchers and raters steer clear of their own 

interpretations of categories and data and that they develop the same 

understanding of the categories based on theoretical and empirical evidence. 

Ideally, the final coding scheme is precise enough to document this shared 

understanding and to guide users to the same interpretation of data and the 

same assignments of data to categories. This shared understanding is also the 

basic idea behind the inter-rater reliability discussed in the literature (Mayring, 

https://fberding.github.io/iotarelr/
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2014). Corresponding measures of inter-rater reliability try to quantify this 

degree of shared interpretation. The goal is that the coding scheme at least 

allows other people to understand how the results in a study are generated. In 

the best case, the coding scheme allows a replication of the study’s results.  

In contrast, when new raters apply an existing coding scheme, it should be 

avoided to incorporate the new raters’ personal interpretations of 

data/categories. The aim is to train new raters so they understand the 

data/categories that are already documented in the scheme. This is important as 

the existing coding scheme already represents a discussed and validated 

understanding that new raters have to acquire in order to apply the coding 

scheme in the same way as in its development study or any other preliminary 

study. 

As a consequence, reliability estimation has to consider the existence of a 

predefined understanding that cannot be adapted. Within the framework of the 

Iota Reliability Concept, this is realized as shown in Figure 22. In order to estimate 

how well a new rater’s understanding of the items documented in a coding 

scheme is developed, data and material from corresponding sources must be 

used. The new rater assigns the material to categories and the assignments are 

compared with the existing assignments of the material. Based on this data, the 

Assignment Error Matrix for the new rater can be calculated as shown in Figure 

22. 

 

Figure 22. Example for Assessing the Reliability of an Existing Coding Scheme 
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In our example, the material is clustered into groups, one for each category of 

the scheme. The material is assigned to a group based on the old assignments. 

The next step is to count the frequency of all categories within each group that 

were assigned by the new rater and then divide them by the number of cases 

within each group (sum of the rows). The result is a table reporting the relative 

frequency for the assignment of a coding unit belonging to category 𝑖 in 

preliminary sources to category 𝑗 by the new rater. This table forms the input for 

the algorithm described in the conditioning stage of section 4. The result is the 

Assignment Error Matrix for that specific rater. 

More specifically, in Figure 22, three documents are assigned to category 1 and 

four are assigned to category 2 in a preliminary study. Of the three documents 

belonging to category 1, the new rater assigned two to category 1 and one to 

category 2. Of the four documents truly belonging to category 2, the new rater 

assigned one document to category 1 and three documents to category 2. The 

resulting table can be read as follows: If the coding unit belongs to category 1 in 

the preliminary study, the new rater assigned the coding unit in 66% of cases to 

category 1 and in 33% to category 2. If the coding unit belongs to category 2 in 

the preliminary study, the new rater assigns the coding unit in 25% of cases to 

category 1 and in 75% of cases to category 2.  

With the help of the algorithm in the conditioning stage, the Assignment Error 

Matrix can be estimated, producing a result that is in line with the assumption of 

weak superiority. In the example above, this matrix equals the relative 

frequencies of that table. 

To calculate and analyze the same reliability measures as in the development 

phase of the coding scheme, the estimated Assignment Error Matrix should be 

used together with the categorical sizes out of the existing sources. Assuming 

that the size of category 1 is 27% and of category 2 it is 73%, the Iota Index is 

about .455, which is quite low according to the cut-off values derived in 

section 6.3. Thus, the new rater has to analyze the differences between the old 

and their own assignments and/or has to discuss their results with other 

users/developers of the coding scheme in order to adapt their coding actions. 

Figure 23 shows the Iota values for a more detailed inspection. 
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Figure 23. Example of an Illustration of Iota for a New Rater 

The data generated for category 1 by the new rater is made up of about 50% of 

the correct coding units (green part of the bar). In 25% of the relevant data are 

missing coding units of category 1 (yellow part of the bar). Instead, about 25% of 

the data of category 1 consists of material truly belonging to category 2 (red part 

of the bar). A similar but slightly better result occurs for the data of category 2. 

Thus, the new rater needs further instructions to distinguish both categories. 

Another practical situation for using this kind of reliability estimation is content 

analysis conducted via supervised machine learning, which typically involves a 

kind of artificial intelligence. Supervised machine learning means that a machine 

learns to transform input data into output data (Lanquillon, 2019, pp. 96–97). 

The machine generates a model characterizing the relationship between both 

kinds of data and uses this model to transform new input data into output data. 

During the learning process, the model is optimized for reproducing the pairs of 

input and output data as good as possible. Thus, the structure is the same as for 

human raters. An artificial intelligence has to learn from existing materials (input 

data) and existing assignments of the materials to categories (output data) in 

order to assign new material correctly. In consequence, all reliability measures 

proposed by the Iota Concept can be applied to this kind of content analysis in a 

similar way. 



Iota Reliability Concept of the Second Generation  

 

110 

Using the package iotarelr, the corresponding function is 𝑐ℎ𝑒𝑐𝑘_𝑛𝑒𝑤_𝑟𝑎𝑡𝑒𝑟() 

which can be used for both human raters and artificial intelligence. The 

corresponding reliability measures are requested with 𝑔𝑒𝑡_𝑖𝑜𝑡𝑎2_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠() 

and the corresponding figure is created via 𝑝𝑙𝑜𝑡_𝑖𝑜𝑡𝑎(). 

8.2.3 Checking for Bias and Different Guidance of a Coding Scheme 

The Iota Concept is inspired by item response theory, which allows to analyze to 

what degree items of a questionnaire or a test function similarly within different 

groups (Baker & Kim, 2017, pp. 38–42). Subgroup invariance is not only 

important for questionnaires and classical achievement/personality tests but 

also for content analysis. This is due to the following reasons. In the context of 

scientific studies, subgroup invariance results from the need of a valid 

measurement. If a coding scheme functions differently for specific subgroups, 

the generated data does not reflect the phenomena but is confounded with 

other constructs.  

In the context of data driven decision making, an absence of subgroup invariance 

can lead to actions preferring or discouraging specific groups, ultimately 

producing wrong conclusions. For example, Seufert et al. (2021, p. 15) worked 

out that the use of artificial intelligence in educational settings can reproduce 

bias present in the training data. Similar challenges are reported by Luan et al. 

(2020, p. 5). Subgroup invariance is thus not only important for content analysis 

done by an artificial intelligence, but also for a content analysis conducted by 

humans. For example, if written essays are used to make judgements regarding 

a student’s qualification (e.g., grades), the absence of subgroup invariance could 

imply that students with a specific gender or a specific social background earn 

better results than students of other groups, although this is not justified with 

their reported performance.  

In analogy to item response theory, the Iota Reliability Concept allows for an 

analysis of such a bias. However, it must be known to which group the coding 

units belong. The idea behind the analysis is illustrated in Figure 24. The complete 

data set is divided into a separate data set for each group, comprising only the 

data for that specific group. For each group, the elements of the Iota Concept are 

estimated separately. If the coding scheme functions similarly for different 

groups, similar values for the elements should occur. 
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Figure 24. Example for an Analysis of Subgroup Invariance 

Figure 24 illustrate the principle with an example. It is assumed that an essay has 

to be rated by two raters on the basis of a coding scheme with “0”, indicating 

that the essay failed and “1”, indicating that the essay passed the exam. It is 

further assumed that the coding should work similarly for males and females.  

To analyze the subgroup invariance for sex, the complete data set is divided into 

two sets containing the ratings for both males and females respectively. For each 

group, the elements of the Iota Concept are estimated. Figure 24 presents the 

corresponding Assignment Error Matrices. For males, the coding shows the 

pattern of a random assignment since all cells in the Assignment Error Matrix are 

nearly .50. That is, for males the decision for failing or passing the essay equals 

random guessing. For females, the coding is more reliable. If the essay is truly 

not good, raters assign failed (“0”) in about 72% of cases and passed (“1”) in only 

28%. If the essay is truly good enough, the raters assign passed (“1”) in about 

73% of cases and failed (“0”) in only 27% of cases.  

In consequence, the coding scheme for the essays lead to unreliable data for 

males. For females, the data is significantly more reliable but still requires some 

improvements. The ratings do not reflect the data for males correctly, leading to 

an increased risk of biased conclusions about the achievements of males 

compared to females. 

Using the package iotarelr, this kind of analysis can be requested with 

𝑐ℎ𝑒𝑐𝑘_𝑑𝑔𝑓(). 



Iota Reliability Concept of the Second Generation  

 

112 

8.2.4 Improving the Quality of Codings 

A third application case of the Iota Reliability Concept is the improvement of data 

quality by using all available information that can be generated through the 

package. This requires at least two raters. The principle is illustrated in Figure 25. 

 

Figure 25. Example for Correcting Errors in Codings 

The Assignment Error Matrix allows the calculation of the probability of the true 

category 𝑖 under the condition of the observed coding pattern. The true category 

with the highest probability is the category with the highest likelihood to produce 

the observed pattern of assignments. Thus, this is the most plausible category. 

In the example from Figure 25, the assigned categories of two raters and the 

Assignment Error Matrix lead to the presented probabilities. If the pattern is 0-

1, the true category is 0 in about 59.3% of cases, category 1 in about 30.9% of 

the cases and category 2 in about 9.9% of cases. Thus, it is mostly reasonable to 

assume that the true category of the first coding unit is category 0. 

The two raters assigned the pattern 1-2 to the third coding unit. This pattern 

implies that the chance of the true category 0 is about 0%, of category 1 51.0% 

and of category 2 49.0%. Thus, it is most plausible to assign category 1 to that 

coding unit. However, this example shows that the certainty for this decision is 

quite low. In practice, this indicates a closer inspection of that coding unit. 

Involving more raters can help to distinguish the true categories with more 

clarity.  

Using the package iotarelr, this kind of analysis can be requested with 

𝑒𝑠𝑡_𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠(). 
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8.3 Limitations and Further Directions 

This study is not without limitations. First, as shown in the first simulation study, 

the accuracy of the estimates is less precise for a low true reliability than for a 

high true reliability. Thus, the estimates can lead to the wrong conclusions. 

Further research should try to establish more accurate algorithms for parameter 

estimations. 

Second, currently there are neither significance tests nor effect sizes established 

that are suitable to describe the differences between two Assignment Error 

Matrices. These tests and effect sizes would be helpful for judging whether or 

not a new rater has acquired the correct understanding of an existing coding 

scheme. Alike applies for the analysis of the Assignment Error Matrices for 

different groups of participants/materials. In these cases, significant tests and 

effect sizes can help to judge if the differences between groups are relevant for 

practice or not.  

Third, the cut-off values are based only on Cramer’s V and Kendall’s Tau. For 

other applications (e.g. Pearson Correlation, Analysis of Variance, 𝑡-Test, Kruskal 

Wallis Test, etc.), other cut-off values may be more appropriate. 
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Appendix A –Confidence Intervals 

Primary Parameters 

 True Iota Index Median CI75 CI90 CI95 CI99 

1 0 0.0541 0.2821 0.5034 0.6758 0.886 

2 0.05 0.0541 0.2821 0.5034 0.6758 0.886 

3 0.1 0.0657 0.2067 0.441 0.5573 0.7822 

4 0.15 0.0664 0.1619 0.3293 0.4491 0.6428 

5 0.2 0.0635 0.13 0.2283 0.3123 0.4982 

6 0.25 0.0608 0.1204 0.1981 0.2544 0.3994 

7 0.3 0.0588 0.1181 0.1922 0.2423 0.3564 

8 0.35 0.0556 0.1153 0.1911 0.2421 0.348 

9 0.4 0.0505 0.1107 0.1915 0.2462 0.3571 

10 0.45 0.0445 0.1032 0.1879 0.2476 0.3651 

11 0.5 0.0354 0.0872 0.1716 0.2355 0.3592 

12 0.55 0.03 0.0775 0.1611 0.2251 0.3507 

13 0.6 0.0234 0.0588 0.1288 0.1883 0.3203 

14 0.65 0.0205 0.0543 0.1248 0.1852 0.3049 

15 0.7 0.0183 0.0494 0.1112 0.1619 0.2817 

16 0.75 0.0153 0.0422 0.1006 0.1513 0.2568 

17 0.8 0.0143 0.0386 0.0929 0.1444 0.2743 

18 0.85 0.0117 0.0304 0.0751 0.1167 0.2178 

19 0.9 0.0118 0.0327 0.0694 0.104 0.2473 

20 0.95 0.0099 0.0254 0.0496 0.0756 0.1681 

21 1 0.0064 0.0165 0.0329 0.0598 0.1804 
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Alpha Reliability 

 True Iota Index Median CI75 CI90 CI95 CI99 

1 0 0.0236 0.0815 0.2696 0.4633 0.4973 

2 0.05 0.0236 0.0815 0.2696 0.4633 0.4973 

3 0.1 0.0374 0.1023 0.2388 0.3806 0.4892 

4 0.15 0.0491 0.1065 0.2185 0.3256 0.478 

5 0.2 0.0511 0.1008 0.1774 0.2506 0.4361 

6 0.25 0.0502 0.0965 0.1633 0.2198 0.3813 

7 0.3 0.0494 0.094 0.1553 0.2065 0.3497 

8 0.35 0.0474 0.0921 0.1517 0.1993 0.3336 

9 0.4 0.0449 0.0906 0.1522 0.2018 0.337 

10 0.45 0.041 0.0867 0.1496 0.2007 0.3398 

11 0.5 0.0339 0.0773 0.144 0.1974 0.335 

12 0.55 0.028 0.0693 0.1387 0.1943 0.329 

13 0.6 0.0217 0.0544 0.1166 0.1691 0.3155 

14 0.65 0.0184 0.0493 0.1153 0.1683 0.3049 

15 0.7 0.0161 0.0451 0.1038 0.1609 0.2994 

16 0.75 0.0133 0.0398 0.1009 0.1592 0.2752 

17 0.8 0.0126 0.039 0.1022 0.1556 0.3121 

18 0.85 0.0091 0.0271 0.0748 0.1278 0.2334 

19 0.9 0.0099 0.0327 0.0767 0.1274 0.2811 

20 0.95 0.007 0.0223 0.0491 0.0833 0.2046 

21 1 0.0041 0.0139 0.0338 0.0783 0.1988 
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Beta Reliability 

 True Iota Index Median CI75 CI90 CI95 CI99 

1 0 0 0 0 0 0 

2 0.05 0 0 0 0 0 

3 0.1 0 0.0011 0.0467 0.0856 0.2429 

4 0.15 0.0043 0.0419 0.0925 0.1388 0.2774 

5 0.2 0.0265 0.0604 0.1072 0.1466 0.264 

6 0.25 0.0327 0.0651 0.1093 0.1464 0.2509 

7 0.3 0.0352 0.0689 0.1141 0.1508 0.2496 

8 0.35 0.0364 0.0731 0.1224 0.1617 0.2682 

9 0.4 0.0356 0.0763 0.1332 0.1788 0.2968 

10 0.45 0.0314 0.0758 0.1422 0.1963 0.3435 

11 0.5 0.0218 0.0648 0.1372 0.1999 0.4036 

12 0.55 0.0054 0.0437 0.1118 0.1758 0.3671 

13 0.6 0 0.0176 0.0765 0.1358 0.3104 

14 0.65 0 6.00E-04 0.0493 0.1416 1 

15 0.7 0 0 0.0379 0.1062 1 

16 0.75 0 0 0.0358 0.1219 1 

17 0.8 0 0 0.0072 0.0683 1 

18 0.85 0 0 0.0471 1 1 

19 0.9 0 0 0 1 1 

20 0.95 0 0 0 1 1 

21 1 0 0 1 1 1 
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Iota 

 True Iota Index Median CI75 CI90 CI95 CI99 

1 0 0.1562 0.2837 0.3825 0.4278 0.468 

2 0.05 0.1562 0.2837 0.3825 0.4278 0.468 

3 0.1 0.115 0.218 0.3203 0.3757 0.4476 

4 0.15 0.0908 0.1679 0.2545 0.311 0.4029 

5 0.2 0.0692 0.1267 0.1938 0.2417 0.3484 

6 0.25 0.0599 0.1093 0.1663 0.2061 0.2925 

7 0.3 0.0563 0.105 0.1612 0.1994 0.28 

8 0.35 0.0532 0.1028 0.1622 0.2019 0.2832 

9 0.4 0.0483 0.0993 0.1626 0.2056 0.2939 

10 0.45 0.0423 0.0922 0.1583 0.2046 0.3035 

11 0.5 0.0319 0.0748 0.1417 0.1911 0.3033 

12 0.55 0.0255 0.0613 0.118 0.1633 0.2777 

13 0.6 0.0196 0.0437 0.0892 0.1308 0.2573 

14 0.65 0.0174 0.0388 0.0782 0.1135 0.2184 

15 0.7 0.015 0.0333 0.067 0.098 0.1831 

16 0.75 0.0137 0.0293 0.0545 0.0736 0.1474 

17 0.8 0.0124 0.0279 0.0549 0.0805 0.146 

18 0.85 0.0107 0.0221 0.0406 0.0606 0.1283 

19 0.9 0.0099 0.0218 0.0436 0.0643 0.131 

20 0.95 0.0072 0.0155 0.0305 0.0481 0.1125 

21 1 0.0045 0.0116 0.0316 0.0667 0.1388 
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Iota Index 

 True Iota Index Median CI75 CI90 CI95 CI99 

1 0 0.0235 0.0561 0.126 0.1783 0.2976 

2 0.05 0.0235 0.0561 0.126 0.1783 0.2976 

3 0.1 0.0337 0.0618 0.113 0.1628 0.2663 

4 0.15 0.0434 0.0768 0.114 0.1474 0.2499 

5 0.2 0.0402 0.0738 0.116 0.1483 0.2386 

6 0.25 0.0336 0.0631 0.1022 0.1324 0.2018 

7 0.3 0.0283 0.0534 0.0872 0.1143 0.1793 

8 0.35 0.0247 0.0474 0.0782 0.1038 0.1685 

9 0.4 0.0228 0.0445 0.0751 0.1012 0.1643 

10 0.45 0.0219 0.0445 0.0782 0.1056 0.1758 

11 0.5 0.0193 0.0413 0.0772 0.1093 0.1812 

12 0.55 0.0203 0.0425 0.0802 0.1129 0.176 

13 0.6 0.0176 0.0358 0.0669 0.0926 0.1526 

14 0.65 0.0172 0.0354 0.0676 0.0949 0.1514 

15 0.7 0.016 0.0318 0.0584 0.0835 0.1326 

16 0.75 0.0147 0.0287 0.0513 0.0707 0.1102 

17 0.8 0.0123 0.025 0.0445 0.0631 0.1014 

18 0.85 0.011 0.0212 0.0386 0.0515 0.0867 

19 0.9 0.0091 0.0185 0.0334 0.0439 0.0784 

20 0.95 0.0066 0.0131 0.0213 0.0278 0.0483 

21 1 0.0037 0.0068 0.0133 0.0193 0.0333 
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Appendix B – Illustrations of the Relationship Between Reliability and the 

Deviation Between the True and Estimated Association/Correlation 
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Appendix C – Global Indices of Model Fit in Simulation Study II 

RMSEA 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0 0 0 0 

Average Iota 0 0 0 0 0 

Minimum Iota  0 0 0 0 0 

Krippendorff’s Alpha 0 0 0 0 0 

Percentage Agreement 0 0 0 0 0 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.001 0 0 0 0 

Average Iota 0 0 0 0 0.003 

Minimum Iota  0.001 0.002 0.002 0.001 0.03 

Krippendorff’s Alpha 0 0 0 0 0.003 

Percentage Agreement 0 0 0 0 0.035 

Nominal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0    

Average Iota 0 0    

Minimum Iota  0 0    

Krippendorff’s Alpha 0.001 0.001    

Percentage Agreement 0.001 0    

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.004 0.001 0 0.017 NA 

Average Iota 0.005 0.003 0 0.01 NA 

Minimum Iota  0.006 0.004 0 NA NA 

Krippendorff’s Alpha 0.007 0.004 0 0.002 NA 

Percentage Agreement 0.005 0 0 NA NA 
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Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0 0 0 0 

Average Iota 0 0 0 0 0 

Minimum Iota  0 0 0 0 0 

Krippendorff’s Alpha 0 0 0 0 0 

Percentage Agreement 0 0 0 0 0 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.002 0 0.003 0 0.002 

Average Iota 0.001 0.001 0 0.002 0.001 

Minimum Iota  0 0 0 0 0.001 

Krippendorff’s Alpha 0.003 0.001 0.001 0 0 

Percentage Agreement 0.001 0 0.001 0.001 0.001 

Ordinal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0    

Average Iota 0 0    

Minimum Iota  0 0    

Krippendorff’s Alpha 0 0    

Percentage Agreement 0 0    

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.001 0 0 0.004 0.004 

Average Iota 0.001 0 0.002 0.001 NA 

Minimum Iota  0.002 0 0.003 0 NA 

Krippendorff’s Alpha 0 0 0.002 0.003 0.015 

Percentage Agreement 0 0.001 0 0 NA 
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SRMR (Maximal Value of Within and Between Level) 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.001 0.01 0.006 0.005 0.002 

Average Iota 0.005 0.017 0.008 0.003 0.002 

Minimum Iota  0.003 0.019 0.011 0.004 0.004 

Krippendorff’s Alpha 0.005 0.024 0.008 0.002 0.001 

Percentage Agreement 0.008 0.009 0.009 0.003 0.001 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.005 0.001 0 0 0.001 

Average Iota 0.002 0.002 0.002 0.001 0.006 

Minimum Iota  0.004 0.003 0.004 0.002 0.012 

Krippendorff’s Alpha 0.004 0.002 0.001 0 0.005 

Percentage Agreement 0.001 0.001 0.001 0 0.017 

Nominal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.012 0.005    

Average Iota 0.01 0.003    

Minimum Iota  0.006 0.004    

Krippendorff’s Alpha 0.013 0.011    

Percentage Agreement 0.012 0.001    

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.011 0.003 0.001 0.009 NA 

Average Iota 0.014 0.005 0.003 0.004 NA 

Minimum Iota  0.015 0.008 0.003 NA NA 

Krippendorff’s Alpha 0.018 0.007 0.001 0.001 NA 

Percentage Agreement 0.012 0.001 0.002 NA NA 
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Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.002 0.007 0.004 0.002 0.002 

Average Iota 0.004 0.009 0.008 0 0.001 

Minimum Iota  0.009 0.008 0.011 0.004 0 

Krippendorff’s Alpha 0.002 0.007 0.008 0.001 0.003 

Percentage Agreement 0.004 0.011 0.007 0.002 0 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.006 0 0.004 0.002 0.004 

Average Iota 0.004 0.003 0.001 0.003 0.002 

Minimum Iota  0.001 0.001 0 0.001 0.003 

Krippendorff’s Alpha 0.007 0.002 0.002 0.001 0.001 

Percentage Agreement 0.004 0.002 0.003 0.003 0.003 

Ordinal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.005 0.008    

Average Iota 0.007 0.008    

Minimum Iota  0.006 0.011    

Krippendorff’s Alpha 0 0.015    

Percentage Agreement 0.005 0.004    

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.004 0.001 0.001 0.015 0.004 

Average Iota 0.005 0.002 0.005 0.006 NA 

Minimum Iota  0.007 0.002 0.006 0.002 NA 

Krippendorff’s Alpha 0 0 0.005 0.012 0.004 

Percentage Agreement 0.003 0.003 0.003 0.001 NA 
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CFI 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1 1 1 1 

Average Iota 1 1 1 1 1 

Minimum Iota  1 1 1 1 1 

Krippendorff’s Alpha 1 1 1 1 1 

Percentage Agreement 1 1 1 1 1 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.999 1 1 1 1 

Average Iota 1 1 1 1 0.999 

Minimum Iota  0.999 1 1 1 0.996 

Krippendorff’s Alpha 1 1 1 1 0.999 

Percentage Agreement 1 1 1 1 0.993 

Nominal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1    

Average Iota 1 1    

Minimum Iota  1 1    

Krippendorff’s Alpha 0.986 0.998    

Percentage Agreement 0.98 1    

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.809 1 1 0.999 NA 

Average Iota 0.933 1 1 1 NA 

Minimum Iota  0.976 0.999 1 NA NA 

Krippendorff’s Alpha 0.787 0.999 1 1 NA 

Percentage Agreement 0.984 1 1 NA NA 
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Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1 1 1 1 

Average Iota 1 1 1 1 1 

Minimum Iota  1 1 1 1 1 

Krippendorff’s Alpha 1 1 1 1 1 

Percentage Agreement 1 1 1 1 1 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.999 1 1 1 1 

Average Iota 0.999 1 1 1 1 

Minimum Iota  1 1 1 1 1 

Krippendorff’s Alpha 0.998 1 1 1 1 

Percentage Agreement 0.999 1 1 1 1 

Ordinal Data – Type II Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1    

Average Iota 1 1    

Minimum Iota  1 1    

Krippendorff’s Alpha 1 0.998    

Percentage Agreement 1 1    

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.996 1 1 0.999 1 

Average Iota 0.983 1 1 1 NA 

Minimum Iota  0.813 1 1 1 NA 

Krippendorff’s Alpha 1 1 1 0.999 0.999 

Percentage Agreement 1 1 1 1 NA 
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Appendix D – Global Indices of Model Fit in Simulation Study III 

RMSEA 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0 0 0 0 

𝑑 = 1.5 0 0 0 0 0 

𝑑 = 2.0 0 0 0 0 0 

𝑑 = 3.0 0 0 0 0 0 

𝑑 = 4.0 0 0 0 0 0 

𝑑𝑑𝑦𝑛 = 0.5 0 0 0 0 0 

𝑑𝑑𝑦𝑛 = 2.0 0 0 0 0 0 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.007 0.013 0.003 0.006 0.004 

𝑑 = 1.5 0.007 0.016 0.004 0.006 0.003 

𝑑 = 2.0 0.007 0.017 0.005 0.005 0.002 

𝑑 = 3.0 0.008 0.017 0.005 0.004 0 

𝑑 = 4.0 0.008 0.016 0.006 0.003 0 

𝑑𝑑𝑦𝑛 = 0.5 0.007 0.017 0.005 0.006 0.003 

𝑑𝑑𝑦𝑛 = 2.0 0.007 0.015 0.005 0.006 0.004 

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.001 0.014 0.005 0.05 NA 

𝑑 = 1.5 0.001 0.015 0.006 0.033 NA 

𝑑 = 2.0 0.001 0.015 0.006 0.018 NA 

𝑑 = 3.0 0.001 0.015 0.007 NA NA 

𝑑 = 4.0 0 0.015 0.008 NA NA 

𝑑𝑑𝑦𝑛 = 0.5 0.001 0.016 0.007 0.023 NA 

𝑑𝑑𝑦𝑛 = 2.0 0.001 0.015 0.006 0.012 NA 
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Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0 0 0 0 0 

𝑑 = 1.5 0 0 0 0 0 

𝑑 = 2.0 0 0 0 0 0 

𝑑 = 3.0 0 0 0 0 0 

𝑑 = 4.0 0 0 0 0 0 

𝑑𝑑𝑦𝑛 = 0.5 0 0 0 0 0 

𝑑𝑑𝑦𝑛 = 2.0 0 0 0 0 0 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.002 0.011 0 0.002 0.002 

𝑑 = 1.5 0.002 0.013 0 0.002 0.003 

𝑑 = 2.0 0.001 0.013 0 0.002 0.003 

𝑑 = 3.0 0 0.014 0.001 0.002 0.004 

𝑑 = 4.0 0 0.013 0 0.002 0.005 

𝑑𝑑𝑦𝑛 = 0.5 0.002 0.014 0 0.002 0.004 

𝑑𝑑𝑦𝑛 = 2.0 0.002 0.013 0 0.003 0.004 

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.004 0 0 0.002 NA 

𝑑 = 1.5 0.003 0.002 0 0.002 0.007 

𝑑 = 2.0 0.002 0.003 0 0.002 NA 

𝑑 = 3.0 0.002 0.004 0.001 0.001 0.007 

𝑑 = 4.0 0.001 0.005 0.001 0.001 NA 

𝑑𝑑𝑦𝑛 = 0.5 0.003 0.003 0 0.001 0.005 

𝑑𝑑𝑦𝑛 = 2.0 0.004 0.002 0 0.001 NA 
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SRMR (Maximal Value of Within and Between Level) 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.026 0.023 0.004 0.008 0.004 

𝑑 = 1.5 0.027 0.024 0.003 0.007 0.003 

𝑑 = 2.0 0.027 0.024 0.003 0.006 0.003 

𝑑 = 3.0 0.028 0.024 0.003 0.006 0.003 

𝑑 = 4.0 0.028 0.023 0.004 0.005 0.004 

𝑑𝑑𝑦𝑛 = 0.5 0.028 0.024 0.003 0.006 0.004 

𝑑𝑑𝑦𝑛 = 2.0 0.028 0.024 0.004 0.007 0.004 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.016 0.019 0.004 0.007 0.007 

𝑑 = 1.5 0.018 0.021 0.005 0.008 0.005 

𝑑 = 2.0 0.019 0.022 0.006 0.008 0.004 

𝑑 = 3.0 0.02 0.023 0.007 0.007 0.003 

𝑑 = 4.0 0.021 0.024 0.009 0.006 0.003 

𝑑𝑑𝑦𝑛 = 0.5 0.018 0.022 0.006 0.008 0.006 

𝑑𝑑𝑦𝑛 = 2.0 0.018 0.02 0.006 0.008 0.007 

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.005 0.024 0.013 0.028 NA 

𝑑 = 1.5 0.005 0.026 0.014 0.016 NA 

𝑑 = 2.0 0.005 0.027 0.014 0.008 NA 

𝑑 = 3.0 0.005 0.028 0.016 NA NA 

𝑑 = 4.0 0.004 0.029 0.017 NA NA 

𝑑𝑑𝑦𝑛 = 0.5 0.005 0.028 0.015 0.011 NA 

𝑑𝑑𝑦𝑛 = 2.0 0.006 0.027 0.015 0.005 NA 
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Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.014 0.002 0.004 0.005 0.004 

𝑑 = 1.5 0.011 0.003 0.004 0.005 0.005 

𝑑 = 2.0 0.009 0.004 0.005 0.005 0.006 

𝑑 = 3.0 0.007 0.005 0.005 0.005 0.007 

𝑑 = 4.0 0.006 0.006 0.005 0.004 0.008 

𝑑𝑑𝑦𝑛 = 0.5 0.011 0.004 0.004 0.005 0.007 

𝑑𝑑𝑦𝑛 = 2.0 0.013 0.004 0.004 0.005 0.006 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.006 0.016 0.001 0.004 0.004 

𝑑 = 1.5 0.005 0.017 0.001 0.003 0.005 

𝑑 = 2.0 0.004 0.018 0.002 0.003 0.006 

𝑑 = 3.0 0.002 0.019 0.002 0.003 0.008 

𝑑 = 4.0 0.002 0.02 0.002 0.004 0.009 

𝑑𝑑𝑦𝑛 = 0.5 0.005 0.019 0.002 0.003 0.007 

𝑑𝑑𝑦𝑛 = 2.0 0.006 0.018 0.002 0.004 0.006 

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.011 0.002 0.002 0.008 NA 

𝑑 = 1.5 0.009 0.004 0.003 0.008 0.008 

𝑑 = 2.0 0.008 0.005 0.003 0.007 NA 

𝑑 = 3.0 0.006 0.007 0.003 0.006 0.004 

𝑑 = 4.0 0.005 0.008 0.003 0.005 NA 

𝑑𝑑𝑦𝑛 = 0.5 0.009 0.006 0.003 0.006 0.005 

𝑑𝑑𝑦𝑛 = 2.0 0.01 0.005 0.003 0.007 NA 
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CFI 

Nominal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1 1 1 1 

𝑑 = 1.5 1 1 1 1 1 

𝑑 = 2.0 1 1 1 1 1 

𝑑 = 3.0 1 1 1 1 1 

𝑑 = 4.0 1 1 1 1 1 

𝑑𝑑𝑦𝑛 = 0.5 1 1 1 1 1 

𝑑𝑑𝑦𝑛 = 2.0 1 1 1 1 1 

Nominal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.983 0.998 1 0.999 0.999 

𝑑 = 1.5 0.978 0.996 1 0.999 0.999 

𝑑 = 2.0 0.972 0.995 1 0.999 0.999 

𝑑 = 3.0 0.961 0.994 0.999 0.999 1 

𝑑 = 4.0 0.954 0.993 0.999 0.999 1 

𝑑𝑑𝑦𝑛 = 0.5 0.975 0.995 0.999 0.999 0.999 

𝑑𝑑𝑦𝑛 = 2.0 0.979 0.997 1 0.999 0.999 

Nominal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.983 0.994 0.999 0.991 NA 

𝑑 = 1.5 0.996 0.993 0.999 0.996 NA 

𝑑 = 2.0 0.998 0.991 0.998 0.999 NA 

𝑑 = 3.0 1 0.988 0.998 NA NA 

𝑑 = 4.0 1 0.987 0.997 NA NA 

𝑑𝑑𝑦𝑛 = 0.5 0.997 0.991 0.998 0.998 NA 

𝑑𝑑𝑦𝑛 = 2.0 0.989 0.992 0.998 1 NA 

 

  



 Berding & Pargmann 

 

143 

Ordinal Data – Deviation  

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 1 1 1 1 1 

𝑑 = 1.5 1 1 1 1 1 

𝑑 = 2.0 1 1 1 1 1 

𝑑 = 3.0 1 1 1 1 1 

𝑑 = 4.0 1 1 1 1 1 

𝑑𝑑𝑦𝑛 = 0.5 1 1 1 1 1 

𝑑𝑑𝑦𝑛 = 2.0 1 1 1 1 1 

Ordinal Data – Type I Error 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.998 0.998 1 1 1 

𝑑 = 1.5 0.999 0.997 1 1 0.999 

𝑑 = 2.0 1 0.996 1 1 0.999 

𝑑 = 3.0 1 0.994 1 1 0.998 

𝑑 = 4.0 1 0.994 1 1 0.997 

𝑑𝑑𝑦𝑛 = 0.5 0.999 0.996 1 1 0.998 

𝑑𝑑𝑦𝑛 = 2.0 0.999 0.997 1 1 0.999 

Ordinal Data – Correct Classification of Effect Sizes 

 

No 
Relationship 

Weak 
Relationship 

Medium 
Relationship 

Strong 
Relationship 

Perfect 
Relationship 

Iota Index 0.923 1 1 1 NA 

𝑑 = 1.5 0.952 1 1 1 0.997 

𝑑 = 2.0 0.969 1 1 1 NA 

𝑑 = 3.0 0.986 0.999 1 1 0.999 

𝑑 = 4.0 0.994 0.999 1 1 NA 

𝑑𝑑𝑦𝑛 = 0.5 0.959 1 1 1 1 

𝑑𝑑𝑦𝑛 = 2.0 0.938 1 1 1 NA 
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In educational settings, analyzing textual data via content analysis is

a popular researchmethod. Thedata is a valuable source of informa-

tion as it offers deep insights into learning and learning outcomes.

In practice, it can be used to improve classroom diagnostics and

instruction. Nowadays, technology such as learning analytics can be

used for the same cause. For both purposes, reliable research instru-

ments are needed. Content analysis, often the measure of choice, is

required to meet quality criteria such as objectivity, reliability and

validity. However, some of the reliability measures most frequently

usedhave lately beendiscussed controversially, indicating that there

is room for improvement. The first generation of the Iota concept

caters to the idea of improved reliability measures for content

analysis done by humans or artificial intelligences. In this book, the

authors introduce a refinedmeasure: The Iota concept of the second

generation. In contrast to pre-existingmeasures, second generation

Iota can for example a) provide insights into the reliability of every

single category of a scale and how a coding scheme may produce

bias, b) provide rules of thumb for evaluating content analysis and

c) provide possibilities for data replication and error-corrected data.

This book is structured as a guide for researchers that want to learn

more about the mechanics and details of the Iota concept or use it

as the reliability measure of choice in their research.
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