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Abstract

In this thesis, we study moving horizon estimation (MHE) schemes for state esti-
mation of general nonlinear dynamical systems that are subject to unknown distur-
bances and noise. We establish desired robust stability and performance guarantees
under realistic conditions, address the practically important case of MHE for real-
time applications, and investigate methods specifically tailored to joint state and
parameter estimation.
In more detail, we develop a Lyapunov-based MHE framework for general nonlinear
continuous-time systems, thus closing the gap to the current discrete-time literature.
The proposed method has the decisive advantage that arbitrary sampling strategies
can be employed to define time instants at which the underlying optimization prob-
lem is actually solved. Our results are based on a novel detectability condition
for nonlinear systems in continuous time and its Lyapunov function characteriza-
tion. We develop methods to systematically construct such functions in practical
applications in order to provide detectability certificates for nonlinear discrete- and
continuous-time systems, which is crucial to conclude statements about the stability
of MHE that go beyond conceptual nature. Furthermore, we address the practically
relevant case of MHE algorithms for real-time applications, where the solver is usu-
ally terminated before reaching the global optimum. In this context, we consider two
fundamentally different MHE formulations for which we show that robust stability
guarantees are maintained regardless of the chosen numerical solver and the number
of solver iterations performed. For systems that are additionally subject to para-
metric uncertainties, we also show under which modifications of the MHE scheme
constant or time-varying system parameters can be jointly estimated—despite po-
tentially weak or missing excitation. To this end, we propose an adaptive regu-
larization of the cost function that uses real-time information about the current
parameter excitation. Finally, we develop novel accuracy and performance guaran-
tees for MHE. Here, we employ a certain turnpike property which essentially requires
that solutions to the MHE optimization problems are most of the time close to the
omniscient acausal infinite-horizon solution involving all past and future data. This
leads to the surprising observation that MHE problems naturally exhibit a leaving
arc, which actually may have a strong negative impact on the estimation accuracy.
To counteract this, we propose a delayed MHE scheme, and we show that the re-
sulting performance is approximately optimal and implies bounded dynamic regret
with respect to the acausal infinite-horizon solution, with error terms that can be
made arbitrarily small by an appropriate choice of the delay. We illustrate our the-
oretical results with various numerical examples from the literature, which highlight
the applicability and practical relevance of the developed theory.
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Notation

The following is a list of important abbreviations, acronyms, and symbols used in
this work. Additional notation required in certain parts is defined in the respective
sections.

Abbreviations and acronyms

EKF extended Kalman filter
GAS global asymptotic stability
GGN generalized Gauss-Newton
i-iIOSS incremental integral input/output-to-state stability
i-IOSS incremental input/output-to-state stability
i-ISS incremental input-to-state stability
iISS integral input-to-state stability
IOSS input/output-to-state stability
ISS input-to-state stability
LMI linear matrix inequality
LPV linear parameter-varying
LTI linear time-invariant
LTV linear time-varying
MHE moving horizon estimation
MPC model predictive control
NLP nonlinear program
PE persistence of excitation
RGAS robust global asymptotic stability
RGES robust global exponential stability
s.t. such that
SDP semidefinite programming
SOS sum of squares
SSE sum of squared errors
UBEBS uniform bounded-energy bounded-state



xiv Notation

Real numbers and sets

R set of real numbers
R≥0 (R>0) set of non-negative (positive) real numbers
⌈x⌉ smallest integer greater than or equal to x ∈ R
⌊x⌋ largest integer smaller than or equal to x ∈ R
I set of integers
I≥a (Ie

≥a) set of (even) integers greater than or equal to a ∈ I
I[a,b] set of integers in the interval [a, b] ⊂ I

Linear algebra

In identity matrix of dimension n× n

0n×m (0) zero matrix of dimension n×m (zero matrix with the dimension
being clear from the context)

A⊤ transpose of a matrix A ∈ Rn×m

diag(v) diagonal matrix with the elements of v on the main diagonal
|x| Euclidean norm of a vector x ∈ Rn

|x|A weighted Euclidean norm |x|A =
√
x⊤Ax of a vector x ∈ Rn for a

symmetric positive definite matrix A ∈ Rn×n

λmax(A) maximum eigenvalue of a symmetric matrix A ∈ Rn×n

λmin(A) minimum eigenvalue of a symmetric matrix A ∈ Rn×n

λmax(A,B) maximum generalized eigenvalue of symmetric matrices A,B ∈
Rn×n, i.e., largest scalar λ ∈ R satisfying det(A− λB) = 0

A ≻ (⪰) B symmetric matrix X = A − B is positive (semi-)definite for ma-
trices A,B ∈ Rn×n, i.e., v⊤Xv > (≥) 0 for all v ∈ Rn with v ̸= 0

A ≺ (⪯) B symmetric matrix X = A− B is negative (semi-)definite for ma-
trices A,B ∈ Rn×n, i.e., v⊤Xv < (≤) 0 for all v ∈ Rn with v ̸= 0

Signals and sequences

∥x∥ essential supremum norm ess supt∈R≥0
|x(t)| of a measurable, lo-

cally essentially bounded function x : R≥0 → Rn (alternatively,
supremum norm supt∈I≥0

|x(t)| of a sequence x : I≥0 → Rn)
∥x∥0:T essential supremum norm ess supt∈[0,T ] |x(t)| of a truncated mea-

surable, locally essentially bounded function x : R≥0 → Rn (alter-
natively, supremum norm supt∈I[0,T ]

|x(t)| of a truncated sequence
x : I≥0 → Rn)



Notation xv

Comparison functions [Kel14]

K A function α : R≥0 → R≥0 is of class K (α ∈ K) if it is continuous,
strictly increasing, and satisfies α(0) = 0.

K∞ A function α : R≥0 → R≥0 is of class K∞ (α ∈ K∞) if α ∈ K and
additionally lims→∞ α(s) = ∞.

L A function θ : R≥0 → R≥0 is of class L (θ ∈ L) if it is continuous,
non-increasing, and limt→∞ θ(t) = 0.

KL A function β : R≥0 × R≥0 → R≥0 is of class KL (β ∈ KL) if
β(·, t) ∈ K and β(s, ·) ∈ L for any fixed t ∈ R≥0 and s ∈ R≥0.





1. Introduction

1.1. Motivation

The knowledge of the internal state of a dynamical system is of crucial importance
for many control applications, for example when stabilizing the system via state
feedback, when monitoring compliance with safety-critical conditions or when de-
tecting errors and external attacks. In most practical cases, however, the state
cannot be completely measured for various (possibly physical or economic) reasons
and therefore must be reconstructed using the available input-output signals. This
is generally a challenging problem, especially in the presence of nonlinear systems
and when robustness to model errors and measurement noise must be ensured.
Moving horizon estimation (MHE) [RMD20] is a modern optimization-based state
estimation strategy that is naturally suitable for this purpose. Here, the current state
estimate is obtained by solving an optimization problem involving a fixed number of
past measurements, extracting the last state of the optimal estimated sequence, and
repeating the online optimization in the next sampling time in a receding horizon
fashion. It can be interpreted as an approximation to full information estimation
(FIE), which optimizes over all available historical data. However, FIE is usually
only of theoretical interest (particularly as a benchmark for MHE), since the com-
plexity of the underlying optimization problem continuously grows with time and
thus quickly becomes computationally intractable in practical applications.
MHE has several advantages over other state estimation methods: it is naturally ap-
plicable to nonlinear systems, provides the ability to include additional information
such as constraints, is intuitive to tune, and yields optimal estimation results. More-
over, it is fairly easy to implement using high-level software packages (such as acados
[Ver+21] and CasADi [And+18]), merely requiring knowledge of the model equations
and corresponding computing resources. This is in strong contrast to most nonlinear
observers; they require less computing power when applied, but the corresponding
design is usually based on the search for a global transformation into a suitable ob-
server normal form or the solution of a partial differential equation [BAA22], which
is generally non-trivial and requires a deeper understanding of the underlying theory,
representing a relatively large hurdle for use in practice. For these reasons, and not
least because of the steadily growing availability of computing capacities and the
development of highly efficient optimization algorithms, MHE is increasingly applied
in various different fields, ranging from chemical and process engineering [HCE18;
Els+21], mobile robotics and localization [Liu+17; Bre19], offshore engineering and
freight transportation [CLH22], to medical applications [Kle+23].
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However, the corresponding theory developed rather slowly, with little ability to
provide practical tuning guidelines. Only recently, substantial progress has been
made by deriving robustness properties of MHE under a relatively mild detectability
condition, compare [RMD20]. Nevertheless, many problems and open questions
remain that prevent the current MHE theory from providing any value beyond
conceptual nature. Specifically, the following problems can be identified.

1. Practical relevance: The recently developed robustness guarantees for MHE
require the knowledge of a particular detectability property for the design of
the cost function, for which there is no systematic method for verification.
Moreover, the results are mostly overly conservative, yielding unrealistic and
practically irrelevant design guidelines and estimates on the horizon length.

2. Restrictive design: The most recent results in the field of nonlinear MHE focus
on discrete-time systems and do not have a direct continuous-time counter-
part. In this context, there is also a lack of fundamental theory on suitable
continuous-time notions of detectability and robust stability. However, inves-
tigating corresponding MHE schemes is important, as the original physical
system to be estimated usually corresponds to a continuous-time model. Hav-
ing to discretize it first significantly complicates the system representation,
restricts flexibility, can lead to additional discretization errors, and requires
fixing a particular discretization scheme and sampling period beforehand.

3. Real-time capability: The computing power available in practice is often
severely limited, and computing the global optimum at each time step is usu-
ally not possible within a fixed time interval. Instead, the solver is usually
terminated with a suboptimal solution, which renders the theoretical guaran-
tees invalid (as they usually depend on this criterion).

4. Parametric model uncertainties: In practical applications, the derived system
model requires system identification and usually suffers from parametric un-
certainties, as only noisy measurement data is available. This, however, may
invalidate the available robustness guarantees, which crucially rely on an exact
model of the system, or even cause the estimation error to become unstable.
Adapting the parameters online to obtain a precise model is not directly pos-
sible, as it is yet unclear how to deal with potential lack of excitation (which
often occurs frequently or unpredictably in practical applications).

5. Estimation performance: There is no general performance analysis of MHE
available. It is therefore unclear how an MHE scheme must be designed in
order to ultimately achieve a similar estimation performance to the (desired
but impractical) FIE counterpart or a comparable benchmark.

This thesis aims at developing a deepened system-theoretic understanding of MHE
and establishing desired robust stability and performance guarantees under realistic
and practically relevant conditions, contributing to the greater goal of supplementing
the great success of MHE in practical applications with a well-founded theory. In
the following two sections, we provide an overview on the related literature and
summarize the main contributions of this thesis.
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1.2. Literature overview

In this section, we provide a brief overview over the literature related to the research
topic. This of course covers works on nonlinear MHE, but also on system-theoretic
properties such as detectability and robust stability, methods for combined state
and parameter estimation in general, as well as performance and turnpike analysis
in the context of optimal control.

1.2.1. Nonlinear detectability

While it is well understood how observability and detectability can be characterized
and verified for linear systems (see, for example, Chapters 5 and 6 in [Son90]), this
is not the case for general nonlinear systems. Here, one might transfer conceptually
similar approaches and generally argue about the indistinguishability of different
initial conditions based on the respective output signals or try to analyze the ob-
servation space of the system using Lie derivatives along the vector field (see, e.g.,
[Bes07, Ch. 1]). However, explicit verification of such rather abstract properties in
practical applications is generally a complex and difficult problem.
A system-theoretic approach to characterize detectability for nonlinear systems is
given by the concept of incremental input/output-to-state stability (i-IOSS). This
property requires that the difference between any two trajectories of a dynamical
system is upper bounded by the difference in their respective initial conditions,
their inputs, and their outputs. Loosely speaking, if the differences between their
respective inputs and outputs are small, then the difference between the states must
also become small, which hence directly entails an indistinguishability property that
is a natural characteristic of detectability in general.
The concept of i-IOSS was originally proposed in [SW97] to extend the notion of
(non-incremental) input/output-to-state stability (IOSS)—which compares a sys-
tem trajectory with the zero-trajectory and can thus only be regarded as “zero-
detectability”—to a pair of arbitrary system trajectories. Introduced in an L∞-
to-L∞ sense, it has been shown that a continuous-time system must necessarily
satisfy the i-IOSS property to admit a robustly stable full-order state observer,
and its discrete-time analogue has become the standard in the field of optimization-
based state estimation, compare, for example, [RJ12; Ji+16; Mül17; RMD20; AR21;
KM23; Sch+23; Hu24; Ale25].
The characterization of system properties via Lyapunov functions has turned out to
be very useful for system analysis and the design of controllers and observers. Here,
it is important to establish the equivalence between the Lyapunov function char-
acterization and its corresponding original notion by means of converse theorems,
in order to ensure that considering the Lyapunov function, which is usually easier
when designing controllers and observers, is indeed without loss of generality. Such
results are available (mostly in both continuous and discrete time) for, e.g., global
asymptotic stability (GAS) in [LSW96] and [JW01], input-to-state stability (ISS) in
[SW95] and [JW01], (non-incremental) IOSS in [KSW01] and [CT08], and integral
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IOSS in [Ing01a; Ing01b]. Stronger, incremental notions are considered in [Ang02]
and [TRK16], which address incremental GAS and incremental ISS (i-ISS), albeit
under the condition that inputs and external signals (such as, e.g., time-varying
parameters or disturbances) of the system take values in compact sets. The condi-
tion of compactness could be weakened by using a dissipation inequality in integral
form along with relaxing the requirement of smoothness of the Lyapunov function
to mere continuity, which is done in [Ang02] and [Ang09] considering the incremen-
tal L2-to-L∞ (i.e., integral) versions of GAS and ISS for continuous-time systems,
respectively.
More recently, time-discounted variants of i-IOSS were proposed in [KM20; ART21]
for discrete-time systems, where it was shown that discounting past disturbances
appears very natural and even without loss of generality. A corresponding con-
verse Lyapunov result is provided in [ART21], which is structurally easier and more
intuitive to establish with such a discount factor than without, as is the case in,
e.g., [LSW96; KSW01; Ang02; Ang09]. Moreover, i-IOSS with time-discounting
and its associated Lyapunov function are crucial for recent results in the field
of optimization-based state estimation for discrete-time systems, compare [KM23;
AR21; Sch+23].

1.2.2. Robust stability of MHE

One of the main concerns in MHE theory (and observer design in general) is to
ensure, under appropriate conditions, that the corresponding estimation error is
bounded and converges to zero in the ideal, unperturbed case, so that the unknown
true trajectory can be recovered (at least asymptotically). To this end, an MHE
scheme for continuous-time systems was proposed and analyzed in [MM95]. Since a
cost function without a prior weighting was used (which can be seen as a regulariza-
tion term), the system must satisfy an observability condition to ensure exponential
convergence of the estimation error. Using such a cost function, however, requires
long estimation horizons to ensure satisfactory performance in practice, compare
[RMD20, Sec. 4.3.1]. Since the application of MHE inevitably requires some sort of
sampling strategy (i.e., discrete time points at which the optimization is performed),
schemes for discrete-time systems have recently been the main focus in the litera-
ture. Early results in the context of nonlinear systems employed certain uniform
observability properties, compare, for example, [MR95; RRM03; ABB08].
In recent years, the notion of i-IOSS has proven to be a very useful concept for
nonlinear detectability, enabling significant advances in MHE theory. In particular,
in [RJ12], the authors established robust stability of FIE for i-IOSS systems, consid-
ering the special case of convergent (i.e., vanishing) disturbances. Robust stability
of MHE in the more general and practically relevant case of persistent bounded
disturbances was established in [Ji+16], albeit requiring a cost function that does
not allow for standard least squares objectives. This was addressed in [Mül17]
and generalized in [AR19b], however, yielding theoretical guarantees that—counter-
intuitively—deteriorate with an increasing estimation horizon. The Lyapunov-based
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approach proposed in [AR21] is able to avoid this drawback, but on the other hand
requires an additional stabilizability condition. Alternative approaches rely on an
additional pre-estimating observer from which robust stability properties could be
inherited [Liu13; GBE21].
In contrast, another line of research considers a cost function that includes explicit
time discounting, which in the MHE context originates from the work [KM18].
This establishes a more direct link to the i-IOSS property and allows the derivation
of strong robustness guarantees under less restrictive conditions, see, for example,
[KM23; Hu24; Ale25]. In particular, the guarantees improve as the horizon length
increases and do not require additional assumptions such as stabilizability or pre-
estimating observers. The Lyapunov framework proposed in [Sch+23], which es-
sentially relies on the same underlying principles, further simplifies the tuning and
provides less conservative conditions on the horizon length sufficient for guaranteed
robustly stable state estimation.

1.2.3. MHE for real-time applications

MHE requires solving a usually non-convex optimization problem at each time step,
and is hence computationally demanding. Moreover, since the computing power
available in practice is often severely limited, solving the optimization problem to
global optimality at each time step is usually not possible within a fixed time interval.
In order to improve the real-time applicability of MHE, methods employing an ad-
ditional auxiliary observer were developed to structurally simplify the optimization
problem and thus save computing capacity. For example, in [SJF10], an MHE
scheme for linear systems was proposed that utilized an additional Luenberger ob-
server to replace the state equation as a dynamical constraint. As this allows to
compensate for model uncertainties without computing an optimal disturbance se-
quence, the optimization variables could be reduced to one, namely the initial state
at the beginning of the horizon. In [Suw+14], this idea was transferred to a class
of nonlinear systems, and a major speed improvement compared to standard MHE
could be shown. However, this results in a loss of degrees of freedom, since there
is no possibility to tune the cost function with respect to model disturbances and
measurement noise. In [Liu13], an observer was employed to construct a confidence
region for the actual system state. Nevertheless, introducing this region as an addi-
tional constraint in the optimization problem can be quite restrictive and therefore
may not allow significant improvements of MHE compared to the auxiliary observer.
In [GBE21], a proximity-MHE scheme was proposed for a general class of nonlinear
systems, where an additional observer is used to construct a stabilizing a priori es-
timate yielding a proper warm start for the low-level optimization algorithm, and
nominal stability could be shown by Lyapunov arguments.
Nevertheless, all the above methods require optimal solutions to the (simplified, but
still non-convex) MHE problem, and their complete computation within fixed time
intervals is difficult (if not impossible) to guarantee. A more intuitive approach is
to simply terminate the underlying optimization algorithm after a fixed number of
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iterations, which on the one hand provides only suboptimal estimates, but on the
other hand ensures fixed computation times. However, since most results from the
nonlinear MHE literature are crucially based on optimality [RMD20; Mül17; AR21;
Hu24; KM23], stability of suboptimal MHE cannot be straightforwardly deduced.
For practical (real-time) applications, it is therefore essential to develop suboptimal
schemes that guarantee robust stability without requiring optimal solutions.
To this end, fast MHE methods were developed in [Küh+11; WVD14; AG17], per-
forming only a predetermined number of iterations of a certain optimization algo-
rithm (e.g., gradient- or Newton-based). However, the corresponding results rely on
a strong uniform observability condition and (local) contraction properties of the
specific algorithms, requiring both a proper initial guess and at least one iteration
to ensure (local) stability, compare [WVD14; AG17]. In [WK17], the combina-
tion of a fast MHE scheme and pre-estimation using a nonlinear Luenberger ob-
server was considered, combining the advantages of both approaches. A suboptimal
proximity-MHE scheme for linear systems was proposed in [GGE22], where nominal
stability guarantees could be given without performing any optimization by using a
pre-stabilizing observer and contraction properties of a specific gradient-based opti-
mization algorithm. This approach has recently been extended to nonlinear systems
in [GGE21], thus providing nominal stability guarantees for a suboptimal nonlin-
ear proximity-MHE scheme using local properties of the optimization algorithm
involved. Whereas these algorithms require the computation of first-order sensi-
tivities to perform the iterations, zero-order MHE methods were developed that
completely avoid the online evaluation of sensitivities [BZD19] or use fixed approxi-
mations [Bau+21]. The resulting MHE schemes are suitable for real-time estimation
of large-scale processes (arising, for example, from a discretization of partial differ-
ential equations), but their theoretical properties are of qualitative and local nature,
and the respective conditions are hard to verify.

1.2.4. Joint state and parameter estimation

MHE is a model-based state estimation technique and hence requires knowledge of
a suitable dynamical model of the system to be estimated. However, even if the
general structure of the system is known, the model parameters are often uncertain
and/or fluctuate during operation, e.g., due to heat production, mechanical wear,
temperature changes or other external influences. This may invalidate the robust-
ness guarantees, as they usually rely on an exact model of the real system and are
therefore not necessarily valid in the case of parametric model uncertainties. In the
worst case, this could even lead to the estimation error becoming unstable, compare,
for example, [Fit71; SS71].
To address this problem, a min-max MHE scheme was proposed in [ABB12], where
at each time step a least squares cost function is minimized for the worst case of the
model uncertainties. However, such a min-max approach becomes computationally
intensive for general nonlinear systems, and the worst-case consideration may be too
conservative and affect estimation performance. In [MKZ23a], a regularization term
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was employed that depends on a given a priori estimate of the (constant) uncertain
parameters, avoiding a nested min-max optimization scheme and ultimately yielding
state estimates that are robust to changes in the true unknown parameter. Here,
practical stability of the state estimation error with respect to the a priori parameter
error could be established.
Yet it is often advantageous to not only ensure robustness against model errors,
but also to obtain an estimate of the uncertain parameters, since a precise model is
crucially required for, e.g., high-performance control, system monitoring, or fault de-
tection. This demands suitable techniques for online parameter adaptation. In this
context, an MHE scheme was proposed in [SJ11] by treating the unknown constant
parameters as additional states with constant dynamics. The corresponding stabil-
ity analysis is based on the transformation of the extended system into an observable
and an unobservable but exponentially stable subsystem, where the temporary loss
of observability (due to lack of excitation) is handled by suitable regularization and
adaptive weights. However, the robustness properties have not been analyzed, and
the imposed conditions for guaranteed state and parameter convergence are not
trivial to verify in practice. In [FS23], MHE under a non-uniform observability
condition is considered, which is potentially also suitable to be used for joint state
and parameter estimation. The results, however, rely on persistently exciting inputs
and, in particular, no fallback strategy is provided in case a lack of excitation occurs
in practice during estimation. The work [BRD22] investigates MHE for joint state
and parameter estimation from the perspective of numerical optimization. Here, the
lack of excitation is addressed by using additional pseudo-measurements in case the
variances of the estimates do not sufficiently decrease over the estimation horizon.
This ensures that the corresponding covariance matrix remains bounded and the
arrival cost is properly regularized; however, this approach lacks (global) stability
guarantees.
An alternative approach to joint state and parameter estimation is provided by
adaptive observers, which compute state estimates and simultaneously update in-
ternal model parameters. This concept originates from the work [Kre77] and has
been extensively studied in the literature, see, e.g., [IS12] for an introduction to
this topic. Theoretical guarantees usually consider the case of constant parameters
and involve a detectability or observability condition on the system states and a
persistence of excitation (PE) condition to establish parameter convergence. Dif-
ferent system classes (usually neglecting disturbances) have been considered, e.g.,
linear time-varying (LTV) systems [ŢB16], Lipschitz nonlinear systems under a lin-
ear parameterization [CR97], nonlinearly parameterized systems [Far+09; Tyu+13],
or systems in a certain nonlinear adaptive observer canonical form, compare, e.g.,
[BG88; MST01]. An adaptive sliding mode observer was proposed in [EEZ16], which
was generalized to a more general class of systems in [Fra+20], albeit under condi-
tions that imply certain structural restrictions. Adaptive observers usually can also
be applied to track (slowly) time-varying parameters if a forgetting factor is used in
the design, see, e.g., [ŢB16]. Time-varying parameters are explicitly considered and
analyzed in, e.g., [BG88] and [MST01], requiring that the parameter and its time-
derivative are globally bounded for all times. Alternative approaches for systems
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in canonical forms can be found in, e.g., [BM21], where more general identifiers are
used to estimate the dynamics.
The vast part of the literature on state and parameter estimation considers PE
conditions to be uniform in time, which usually is restrictive and cannot be guar-
anteed a priori (except, e.g., for linear systems and suitable input trajectories). To
ensure practical applicability, it is essential to investigate weaker, especially non-
uniform, excitation conditions. In this context, for example, a regularized adaptive
Kalman filter (for LTV systems) was proposed in [Mar+22] and an adaptive ob-
server (for systems in a nonlinear adaptive observer canonical form) in [TM23]. In
both works it could be shown that the state and parameter estimation errors are
bounded without excitation and exponentially stable in the presence of PE. Re-
laxed excitation conditions have recently received much attention in the context
of (pure) parameter estimation of regression models. In [EBO19], however, it was
shown that weaker conditions than PE generally only allow for non-uniform asymp-
totic stability guarantees, which is also consistent with earlier works, e.g., [PLT01].
Using the dynamic regressor extension and mixing idea, exponential convergence
could be established for linear regression models (and certain classes of nonlinear
ones), merely assuming interval excitation (which is strictly weaker than uniform
PE), compare, e.g., [Kor+22; ORA22].

1.2.5. Performance guarantees for state estimation

Current research in the field of MHE is primarily concerned with stability and ro-
bustness guarantees, see, for example, [RMD20, Ch. 4] and [ABB08; Ale+10; AR21;
KM23; Sch+23; Hu24; Ale25]. These works essentially show that under suitable
detectability conditions, the estimation error of MHE (i.e., the deviation between
the estimated and the real system state) converges to a neighborhood of the origin,
the size of which depends on the true unknown disturbance. However, results on
the actual performance of nonlinear MHE methods, and in particular on the ap-
proximation accuracy and performance loss compared to a particular (challenging)
benchmark, are lacking.
In general, a useful metric for quantifying the cumulative performance gap of a cer-
tain (estimation or control) algorithm with respect to a given benchmark is provided
by the notion of dynamic regret. This is in fact a standard measure for analyzing
related methods in the field of reinforcement learning [JOA10; ACJ21]. For the
control of linear dynamical systems, regret-optimal controllers are designed in, e.g.,
[Sab+21; DSZ22; Mar+24b; Mar+24a]. Moreover, a regret analysis is performed
for, e.g., online optimal control algorithms [Aga+19; LCL19; NM22], and the re-
lation between bounded dynamic regret and asymptotic stability of the resulting
closed loop is formally analyzed in [NM23].
In the context of state estimation for linear systems, regret-optimal filters are de-
signed in [GH23; SH22], which essentially minimize the regret with respect to a
clairvoyant (acausal) filter having access to future measurements. This approach is
extended in [BDF23], where an exact solution to the minimal-regret observer is pro-



1. Introduction 9

vided utilizing the system level synthesis framework. In [GGE22], an MHE scheme
is proposed that provides regret guarantees with respect to an arbitrary compar-
ative (e.g., the clairvoyant) observer. This approach is extended to nonlinear sys-
tems in [GGE21], but requires a restrictive convexity condition on the problem and
disturbance- and noise-free data.
Whereas performance guarantees for state estimators are generally rather rare and
usually restricted to linear systems, they often play an important role in nonlinear
optimal control, especially when the overall goal is an economic one. Corresponding
results usually employ a turnpike property of the underlying nonlinear optimal con-
trol problem, compare [McK86; CHL91]. This property essentially implies that opti-
mal trajectories most of the time stay close to an optimal equilibrium (or in general
an optimal time-varying reference), which is regarded as the turnpike. Turnpike-
related arguments are an important tool for assessing the closed-loop performance
of nonlinear model predictive controllers with general economic costs on finite and
infinite horizons, see, for example, [Grü16; FGM18; GP19; FG22]. Necessary and
sufficient conditions for the presence of the turnpike phenomenon in optimal control
are discussed in, e.g., [Dam+14; GM16; Fau+22; Tré23], and are usually based on
dissipativity, controllability, and suitable optimality conditions.

1.3. Contributions and outline of this thesis

The main contribution of this thesis is the development of MHE methods for general
nonlinear systems in the presence of process disturbances and measurement noise,
for which desired (and in particular not too conservative) robust stability and per-
formance guarantees can be given under realistic and verifiable conditions. In the
following, we outline the structure of this thesis and clarify the contributions in
detail.

Chapter 2: Nonlinear detectability

In this chapter, we focus on i-IOSS as a characterization of detectability for gen-
eral nonlinear systems. We start by introducing different notions of i-IOSS in dis-
crete time in Section 2.1, encompassing the traditional asymptotic-gain formula-
tion and modern, time-discounted versions. Then, in Section 2.2, we concentrate
on continuous-time systems and propose a particular L2-to-L∞ variant of i-IOSS,
namely time-discounted incremental integral IOSS (i-iIOSS). We introduce a cor-
responding Lyapunov function characterization of i-iIOSS relying on a dissipation
inequality in integral form, where we show that an exponential decay can be con-
sidered without loss of generality. We establish equivalence between the existence
of an i-iIOSS Lyapunov function and i-iIOSS by means of a converse Lyapunov the-
orem. Our proofs use similar tools as in previous works on incremental integral
ISS [Ang09] and i-IOSS in the discrete-time setting [ART21]; however, we point out
that the presented results do not straightforwardly follow from them. In particular,
continuity of the Lyapunov function candidate is shown by replacing the standard
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local Lipschitz assumption on the vector field of the system by a global property
involving the Osgood condition [Osg98]. As a byproduct, based on this assumption,
we formally prove global existence and uniqueness of system trajectories by adapting
the results from [Lip00; Bih56] to the generic class of measurable, locally essentially
bounded functions.
Furthermore, we propose a time-discounted integral L2-to-L∞ variant of robust
global asymptotic stability (RGAS) and show necessity of i-iIOSS for a system to
admit a general observer mapping satisfying this property. Asking such a stability
property from an observer is advantageous for several reasons: first, it can be seen
as accounting for the disturbance energy under fading memory and thus allows for
a physical interpretation; second, it directly implies an L∞ error bound and thus
combines the advantages of classical ISS and integral ISS properties. Overall, we
provide a general framework for a Lyapunov-based robust stability analysis of ob-
servers in continuous time. This will be an essential tool in the context of moving
horizon estimation in Chapter 3.

Chapter 3: Robust stability

In this chapter, we focus on robust stability guarantees for MHE and in particular
concentrate on a recent Lyapunov-based MHE approach. We first provide a math-
ematical background on MHE by introducing a basic discrete-time MHE scheme
in Section 3.1, where we discuss fundamental properties and characteristics. Then,
we briefly introduce the Lyapunov-based MHE framework proposed in [Sch+23,
Sec. III], which forms a basis for many of the results in this thesis (but is not itself
a contribution1 of it).
In Section 3.2, we propose a Lyapunov-based MHE scheme for general nonlinear
continuous-time systems. We employ a least squares objective with fading memory
and establish robust global exponential stability of the estimation error in a time-
discounted L2-to-L∞ sense. Here, we heavily rely on the concepts of i-iIOSS and
RGAS introduced in Chapter 2 to characterize the required detectability and robust
stability properties. Our derivation builds on our ideas for the discrete-time case
from [Sch+23, Sec. III]; however, the results do not trivially follow from this. In-
stead, the presented results are more general, require a different proof technique, and
offer key advantages over purely discrete-time schemes, especially when the phys-
ical system to be estimated actually corresponds to a continuous-time one (which
is often the case in practice). First, we note that arbitrary sampling strategies can
be employed to define time instants at which the underlying optimization problem
is actually solved, which can even be modified online at runtime. This provides a

1 Julian D. Schiller (the author of this thesis) and Simon Muntwiler are joint first authors of the
article [Sch+23]; Simon Muntwiler provided the theoretical analysis of discrete-time Lyapunov-
based MHE (Sections III-B and III-C in [Sch+23]), which is part of the contributions of the PhD
thesis [Mun24]; Julian D. Schiller contributed the comparison with existing results from the
MHE literature (Section III-D), methods to verify the underlying detectability condition (Sec-
tion IV), and the numerical examples (Section V), which are included in this thesis. A detailed
description of the contributions of each author of [Sch+23] is given in Appendix A.
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huge additional degree of freedom, and even allows the proposed MHE scheme to
be used in an event-triggered fashion, that is, by choosing the sampling instants
online depending on a suitable triggering rule. Consequently, the proposed MHE
scheme can be better tailored to the problem at hand, which can yield more accurate
results with less computational effort compared to standard equidistant sampling.
Furthermore, it may be advantageous in practice to characterize the detectability
of a continuous-time system instead of its discretized representation, as the corre-
sponding analysis is structurally easier and particularly does not require specifying
a certain discretization scheme and a sampling period beforehand, compare also Sec-
tion 7.1. Moreover, the derived robustness guarantees are valid for MHE applied to
the real physical continuous-time system, and not to an approximately discretized
model (which may suffer from additional discretization errors).
In Section 3.3, we provide a detailed discussion of Lyapunov-based approaches in
nonlinear MHE (covering both discrete- and continuous-time frameworks), high-
lighting its advantageous properties arising from the fact that we argue entirely
in Lyapunov coordinates. Specifically, tuning the MHE cost function in order to
achieve valid theoretical guarantees becomes more easy and intuitive, and the deriva-
tion generally allows for significantly less conservative (i.e., smaller) estimates of the
minimum required horizon length compared to the literature.
We illustrate the applicability of Lyapunov-based MHE for both discrete- and contin-
uous-time systems in Section 3.4, using a nonlinear chemical reaction and a quadro-
tor model from the literature. Here, we certify detectability by computing i-IOSS
and i-iIOSS Lyapunov functions using our methods from Section 7.1 and apply the
Lyapunov-based MHE schemes from [Sch+23, Sec. III] and Section 3.2. Overall,
our examples show that the combination of the considered Lyapunov-based MHE
schemes with our verification methods from Section 7.1 allow for guaranteed robust
stability (specifically, RGAS) of MHE under practical conditions, for both discrete-
and continuous-time systems.

Chapter 4: Suboptimality guarantees for real-time applications

In this chapter, we present several suboptimal MHE schemes for general perturbed
nonlinear discrete-time systems and provide robustness guarantees that particularly
do not require optimality of the solutions. This is crucial in order to ensure real-time
applicability of MHE in cases where the optimization problem cannot be solved to
optimality within one fixed sampling interval. To this end, we establish the “feasi-
bility-implies-stability/robustness” paradigm from model predictive control (MPC)
in the context of nonlinear MHE. Indeed, it is well known that if the suboptimal so-
lution to a given MPC problem can be guaranteed to improve the cost of a suitably
chosen warm start, then robust stability of the controller can be directly inferred
[SMR99; PRW11]. Transferring this concept to state estimation, we prove robust
stability of suboptimal MHE by simply requiring that a suboptimal solution im-
proves the cost of a feasible candidate solution. Here, we employ an a priori known,
robustly stable auxiliary observer, from which the robust stability properties can be
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inherited. We specify our setup concerning the system and the auxiliary observer in
Section 4.1.
In Section 4.2, we consider a classical MHE formulation which optimizes over system
trajectories, allowing for suboptimal MHE using a standard least squares cost func-
tion, which is typically chosen in practical applications. We propose two different
candidate solutions for the MHE problem, where the first one essentially corresponds
to a nominal system trajectory initialized with an estimate of the auxiliary observer,
and the second one employs the trajectory of the auxiliary observer restricted to the
current estimation horizon. While the former is applicable to general nonlinear sys-
tems, the latter requires a certain structure of the system and the observer, but
provides qualitatively better theoretical guarantees (in particular, disturbance gains
that do not deteriorate with increasing estimation horizons). For both candidate so-
lutions, we show that the i-IOSS Lyapunov function characterizing the detectability
of the underlying nonlinear system directly serves as Lyapunov function for subop-
timal MHE, from which robust stability can be directly inferred. Here, the derived
robustness guarantees are valid independent of (i) the horizon length; (ii) the cho-
sen optimization algorithm; (iii) the number of solver iterations performed at each
time step (including zero). This represents a major generalization compared to the
literature, as theoretical guarantees for real-time capable MHE schemes usually rely
on local convergence properties of a particular optimization algorithm.
We additionally extend our results to the practically relevant case where the auxiliary
observer may leave the known physical domain of the system (e.g., due to transient
dynamics or perturbations), but where such additional knowledge is to be leveraged
in the MHE problem through an additional state constraint. To this end, we propose
suitable adaptions to the candidate solutions to ensure their feasibility and thus
guarantee constraint satisfaction of suboptimal MHE for all times.
We illustrate the applicability of the proposed suboptimal MHE scheme with a
chemical reaction example, where we first formally verify the sufficient conditions
for robust stability of suboptimal MHE. We observe that performing only a single
iteration of the optimizer each time step is sufficient to significantly improve the
estimation results from the auxiliary observer and achieve an overall estimation per-
formance close to that obtained with standard (optimal) MHE, while significantly
reducing the required computation times. Moreover, this illustrates that the pro-
posed re-initialization strategy used in the construction of the candidate solutions
can be very effective, especially in the case of poor transient behavior of the auxiliary
observer.
In Section 4.3, we consider a modified MHE formulation where we optimize over
trajectories of the auxiliary observer, similar to the idea proposed in [SJF10; SJ14;
Suw+14; WK17]. This leads to an estimation scheme that is easier to implement
and provides improved theoretical guarantees. Since the corresponding suboptimal
MHE scheme is even stronger connected to the auxiliary observer, the theoretical
analysis is more direct, ultimately leading to tighter error bounds. Provided that the
auxiliary observer admits an i-ISS Lyapunov function, we show that this function
directly serves as Lyapunov function for suboptimal MHE under a suitable choice of
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the horizon length. In contrast to [Suw+14; WK17; GGE21], the derived guarantees
are independent of the optimization algorithm, hold for an arbitrary number of solver
iterations, improve as the horizon length increases, and asymptotically approach
those from the auxiliary observer (which is the best possible bound given that we
derive guarantees for an arbitrary number of iterations, including zero).
The simulation example shows that performing already one iteration is sufficient to
significantly improve the estimation results of the auxiliary observer. Moreover, we
find that the modified suboptimal MHE scheme can outperform comparable subop-
timal/fast MHE schemes from the literature that optimize over system trajectories,
especially in case the auxiliary observer is rather aggressive.

Chapter 5: Joint state and parameter estimation

In this chapter, we provide MHE schemes for joint state and parameter estimation
for general nonlinear discrete-time systems subject to process disturbances and mea-
surement noise. This is generally a challenging problem, as in practice insufficient
excitation may occur frequently or unpredictably, potentially rendering classical ap-
proaches based on uniform excitation properties ineffective or invalid. It is therefore
essential to deal with concepts of non-uniform PE in order to cover such scenarios
and to ensure that the estimation methods are robust in this respect.
We first consider the case of constant parameters in Section 5.2. Here, we pro-
pose an MHE scheme that avoids a uniform PE condition and instead uses online
information about the current excitation of the parameters to suitably adjust the
regularization term in the cost function. We establish a bound on the state and
parameter estimation error that is valid for all times—even if the parameters are
never or only rarely excited—and which improves the more often sufficient excitation
is present. The bound specializes to a robust global exponential stability property
under an additional uniform condition on the maximum duration of insufficient ex-
citation. We furthermore discuss the (restrictive) case of uniform PE, where we
show that this is equivalent to the existence of a joint i-IOSS Lyapunov function
for the augmented state vector consisting of the states and the system parameters,
rendering standard MHE methods for state estimation applicable.
In Section 5.3, we extend the MHE scheme and corresponding theoretical results to
the more general case of time-varying parameters. The analysis involves an addi-
tional weak incremental bounded-energy bounded-state property of the parameter
dynamics. Such a condition is naturally required to ensure that arbitrary parameter
drifts cannot cause the estimation error to become unstable in case the parameter
is insufficiently excited and hence unobservable. This allows us to develop robust-
ness guarantees for the overall (state and parameter) estimation error that are valid
independent of the parameter excitation, and which improve the more often the
parameters are detected to be sufficiently excited during operation.
The numerical examples illustrate that the proposed MHE schemes in combination
with the PE monitoring techniques from Section 7.2 are able to efficiently compen-
sate for phases of weak excitation. Specifically, we obtain reliable estimation results
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for all times, which are accurate if sufficient excitation is present and which do not
deteriorate arbitrarily in phases without excitation.

Chapter 6: Turnpike analysis and performance guarantees

In this chapter, we take a different perspective on MHE and investigate the under-
lying optimal state estimation problem through the lens of optimal control. This
motivates us to study the turnpike phenomenon in the context of optimal state es-
timation, which consequently leads to novel performance and regret guarantees for
optimization-based state estimators, in particular MHE.
In Section 6.1, we formalize the general optimal state estimation problem that con-
siders a finite data set of available input-output measurements collected from a gen-
eral nonlinear dynamical system. Then, we specify the benchmark against which we
want to compare the corresponding solution: the omniscient optimal state estimator
with infinite horizon that has perfect memory and access to future measurements.
In Section 6.2, we discuss and analyze the turnpike phenomenon appearing in finite-
horizon optimal estimation problems, which are at the core of all MHE and FIE
methods. In particular, we show that the benchmark estimator, i.e., the solution
of the (acausal) infinite-horizon optimal state estimation problem, serves as turn-
pike for finite-horizon problems involving only a subset of the data. We consider
different mathematical characterizations of this phenomenon and provide sufficient
conditions that involve strict dissipativity and decaying sensitivity of the optimal
estimation problem. Furthermore, we perform a detailed turnpike analysis for the
special case of linear systems and quadratic cost functions, where we essentially show
that decaying sensitivity is naturally present under controllability and observability
using standard arguments from optimal control and Riccati theory. We discuss the
considered turnpike characterizations with regard to their properties and limitations
and introduce a general turnpike definition that combines their advantages. Over-
all, our turnpike analysis leads to the surprising observation that MHE problems
naturally exhibit both an approaching and a leaving arc, which may have a strong
negative impact on the estimation accuracy.
In Section 6.3, we propose a slightly modified variant of classical MHE that involves
an additional delay to effectively counteract the influence of the leaving arc. We
show that the performance of the delayed MHE scheme is approximately optimal
and achieves bounded dynamic regret with respect to the infinite-horizon benchmark
estimator, with error terms that can be made arbitrarily small by an appropriate
choice of the delay. As a result, MHE (with delay) is able to track the accuracy and
performance of the omniscient infinite-horizon benchmark estimator. Moreover, we
propose a novel turnpike prior for MHE formulations with prior weighting, which—in
contrast to the classical filtering or smoothing prior—can be shown to converge to
a neighborhood around the infinite-horizon benchmark estimator that can be made
arbitrarily small by design. Furthermore, we consider the special case of MHE for
offline estimation and show that good performance of a state estimator directly
implies small estimation errors with respect to the true unknown system state.
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In Section 6.4, we illustrate our theoretical results in terms of various numerical
examples from the literature, which show that the proposed modifications can sig-
nificantly improve the estimation results in practice. In particular, we apply the de-
veloped theory to a continuously stirred tank reactor and a highly nonlinear quadro-
tor model with 12 states. Here, we can observe that the turnpike phenomenon is
present in MHE. Moreover, we find that even a delay of very few steps in the MHE
scheme improves the overall estimation error by 20-25 % compared to standard MHE
(without delay). For offline estimation of linear systems, we show that the proposed
delayed MHE scheme provides a useful alternative to established iterative methods
such as the Kalman filter and related smoothing algorithms, significantly outper-
forming them especially in the presence of non-normally distributed noise.

Chapter 7: Verification methods

In this chapter, we present various tools to numerically verify important system-
theoretic properties of general nonlinear systems in practice, such as detectability
(in terms of i-IOSS) and PE. In particular, we employ different tools to reformulate
the corresponding mathematical conditions in the form of linear matrix inequalities
(LMIs) that can be efficiently verified using semidefinite programming (SDP) and
sum-of-squares (SOS) optimization, linear parameter-varying (LPV) embeddings, or
gridding techniques.
In Section 7.1, we focus on the computation of i-IOSS and i-iIOSS Lyapunov func-
tions for discrete- and continuous-time systems, which directly certify exponential
i-IOSS and i-iIOSS, respectively. Note that the lack of such a method in the liter-
ature was generally considered a major problem in [AR21], since i-IOSS became a
standard detectability assumption in the recent nonlinear MHE literature [Mül17;
AR19b; RMD20; Hu24; KM23; AR21; Ale25]. Here, we address this problem and
provide practical tools to actually verify this crucial property in practice.
In Section 7.2, we consider verification methods for PE of trajectory pairs, suitable
to monitor non-uniform excitation properties of unknown system parameters. We
first consider the case of constant parameters, where we derive a general condition
involving a particular observability metric that is constructed using certain matrix
recursions, which can be interpreted as the filtered linearized regressor information
that is visible at the output. Our method is applicable to general nonlinear systems,
requiring the two system trajectories under consideration to be sufficiently close to
each other. We show how these results can be strengthened to arbitrary system
trajectories by restricting the class of systems to a certain linearly parameterized
adaptive observer normal form. We extend our results to the case of time-varying
parameters, which under certain conditions can also be used to verify (non-uniform)
observability of system states.
The numerical experiments conducted in Chapters 3–6 illustrate the applicability of
the proposed verification methods to practical examples from the literature.
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Chapter 8: Conclusions

In this chapter, we provide a concluding overview, summarize the most important
contributions of this thesis, and explain interesting topics and extensions for future
research.

Author statement on previously published works

This thesis presents the outcome of several years of research on MHE theory. Signif-
icant parts have therefore already been published in scientific journals and presented
at conferences (or have been submitted there for review). These publications are
adopted here (in some cases verbatim), further developed, and placed in a broader
context. In particular, the Chapters 2–7 are based on the following publications:

• Chapter 2: [SM23c] and [SM24b, Sec. 2]
• Chapter 3: [SM24b] and [Sch+23, Sec. III-D, Sec. V]
• Chapter 4: [SM23d; SWM23; SKM21]
• Chapter 5: [SM23b; SM24a]
• Chapter 6: [SGM24; SGM25]
• Chapter 7: [Sch+23, Sec. IV], [SM24b, Sec. 4], [SM23b, Sec. 5], [SM23a, Sec. 4]

A detailed list of the publications, including a description of the contributions of
the individual authors, can be found in Appendix A.



2. Nonlinear detectability

In this chapter, we focus on i-IOSS as a characterization of nonlinear detectabil-
ity. We start by introducing different notions of i-IOSS in Section 2.1, encompassing
the traditional “asymptotic-gain” formulation and time-discounted variants. In con-
trast to discrete-time systems, where they are fully equivalent to each other, this is
generally not the case for continuous-time systems. In Section 2.2, we hence focus
on the strongest one, which is given by time-discounted incremental integral IOSS
(i-iIOSS). In particular, we provide an equivalent Lyapunov function characteriza-
tion and establish necessity of i-iIOSS for the existence of state estimators satisfying
a robust stability property in a time-discounted L2-to-L∞ sense.
The theoretical results in this chapter form the general basis for the MHE schemes
presented in Chapter 3 (especially for the continuous-time MHE scheme in Sec-
tion 3.2). They are complemented with suitable verification methods in Section 7.1,
where we provide constructive conditions (in terms of LMIs) to obtain i-IOSS and
i-iIOSS Lyapunov functions.
Disclosure: The following chapter is based upon and in parts literally taken from
our previous publications [SM23c] and Section 2 in [SM24b]. A detailed description
of the contributions of each author is given in Appendix A.

2.1. On different variants of i-IOSS

There are actually multiple ways to define i-IOSS, as we will show in the following.
To this end, let us consider the discrete-time system

x(t+ 1) = f(x(t), u(t), d(t)), x(0) = χ, (2.1a)
y(t) = h(x(t), u(t)) (2.1b)

with discrete time t ∈ I≥0, states x(t) ∈ Rn, outputs y(t) ∈ Rp, time-varying
parameters u(t) ∈ Rm, and inputs d(t) ∈ Rq. Given some initial state χ ∈ Rn

and the sequences u = {u(j)}∞
j=0 and d = {d(j)}∞

j=0, we denote the corresponding
states and outputs of the system (2.1) at time t ∈ I≥0 by x(t) = x(t, χ, u, d) and
y(t) = y(t, χ, u, d) = h(x(t, χ, u, d), u(t)).

Remark 2.1 (Roles of the inputs). Note that the naming and roles of the variables u
and d is not standard in the ISS-related literature. Nevertheless, this is done to be
consistent with the notation used in this thesis (and generally in the literature related
to state estimation), where u refers to known inputs (e.g., control inputs), and d to
unknown inputs affecting the dynamics such as process disturbances.
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The notion of i-IOSS characterizes the distance between two state trajectories x1 =
{x(t, χ1, u, d1)}∞

t=0 and x2 = {x(t, χ2, u, d2)}∞
t=0 of the system (2.1) that result from

the same parameter sequence u but different initial states χ1 and χ2 and different in-
put sequences d1 and d2. Defining the corresponding outputs yi = {y(t, χi, u, di)}∞

t=0,
i = 1, 2, we can give the traditional i-IOSS definition as introduced in [SW97,
Def. 22] (transferred to the discrete-time setting) in terms of a max-based bound
using a function β ∈ KL and asymptotic disturbance gains γd, γy ∈ K:

|x1(t) − x2(t)| ≤ max{β(|χ1 − χ2|, t), γd(∥d1 − d2∥0:t), γy(∥y1 − y2∥0:t)} (2.2)
for all t ∈ I≥0. This notion essentially implies that the difference between two state
trajectories of the system (2.1) is upper bounded by the difference in their respective
initial conditions, their inputs, and their corresponding outputs. Here, it is impor-
tant to note that the influence of the difference in the initial states decays over time
due to the fact that β ∈ KL, while the disturbance and output terms persist. Hence,
if two system trajectories have small differences in their inputs and outputs, then
eventually their states must converge to each other. Consequently, (2.2) entails an
asymptotic version of the classical indistinguishability condition and thus represents
a detectability property. Moreover, it is not a restrictive condition in the context of
robustly stable state observers (which are the focus of this work), since i-IOSS is in
fact necessary for the existence of such, compare [SW97, Prop. 23].
Due to the asymptotic gains in (2.2), however, it has turned out that this formula-
tion is difficult to work with and usually only leads to unsatisfactorily conservative
stability guarantees in the context of MHE, compare the discussion in Section 3.3
below. A more elegant variant of i-IOSS with additional time-discounting was pro-
posed in [KM20; ART21] (for discrete-time systems), where it was shown that the
discounting of past disturbances appears very natural and even without loss of gen-
erality. The corresponding property can be characterized as

|x1(t) − x2(t)| ≤ max
{
β(|χ1 − χ2|, t), max

j∈I[0,t−1]
βd(|d1(j) − d2(j)|, t− j − 1),

max
j∈I[0,t−1]

βy(|y1(j) − y2(j)|, t− j − 1)
}

(2.3)

for all t ∈ I≥0, where β, βd, βy ∈ KL.
Another different formulation is obtained if in (2.3) we replace maximization by
summation and apply a certain coordinate transformation in which the asymptotic
decay specializes to an exponential one:
α(|x1(t) − x2(t)|) ≤ αx(|χ1 − χ2|)ηt

+
t−1∑
j=0

ηt−j−1
(
αd(|d1(j) − d2(j)|) + αy(|y1(j) − y2(j)|)

)
(2.4)

for all t ∈ I≥0, where α, αx, αd, αy ∈ K∞ and η ∈ (0, 1). This formulation is par-
ticularly beneficial since it has an equivalent Lyapunov function1 characterization,

1Whereas in [ART21] there is no formal distinction between the notions from (2.3) and (2.4), the
first step in the proof of the converse Lyapunov result [ART21, Th. 3.2] corresponding to the
property (2.3) is to transfer (2.3) into (2.4) using Sontag’s KL-Lemma [Son98, Prop. 7] and
replacing maximization with summation.
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see [ART21, Th. 3.2].
A key advantage of considering discrete-time systems as in (2.1) is that all i-IOSS
formulations from (2.2)–(2.4) were in fact shown to be fully equivalent, see [ART21],
[KM20], and the technical report [ART20]. As a consequence, the Lyapunov function
characterization of (2.4) is generally also valid for the properties (2.2) and (2.3), and
has therefore proven to be very useful in the context of optimization-based state
estimation, compare [AR21; Sch+23].
For continuous-time systems, only the asymptotic notion of i-IOSS (2.2) exists in the
literature [SW97, Def. 22]. Transferring (2.3)–(2.4) to continuous time by replacing
the maximum operation by the essential supremum norm and summation by inte-
gration, we observe that (2.2)–(2.4) turn out to be actually very different properties
(without further restricting the class of inputs or the system to evolve on compact
sets), and we carefully have to distinguish between them. Note that this is to be
expected, because ISS and integral ISS are known to be very different properties in
the presence of general continuous-time systems, each suitable for a different class of
input functions; for more details, we refer to the book [Mir23]. However, due to the
exponential discounting, it is immediately clear that the continuous-time versions of
(2.2)–(2.4) satisfy the implications (2.4) ⇒ (2.3) ⇒ (2.2), compare Proposition 2.4
below. In the following, we focus on the strongest property given by (2.4), which,
as we show, is closely connected to a strong robust stability property for state esti-
mators—the main topic of this thesis.

2.2. Incremental integral input/output-to-state
stability

In this section, we formalize the time-discounted i-IOSS notion from (2.4) in the
context of continuous-time systems—namely, i-iIOSS. To this end, we first spec-
ify the general setting and classes of input functions in Section 2.2.1. Then, we
define i-iIOSS using nominal and disturbed outputs in Section 2.2.2, propose equiv-
alent Lyapunov function characterizations in Section 2.2.3, and establish necessity
of i-iIOSS for the existence of state estimators satisfying a robust stability property
in a time-discounted L2-to-L∞ sense in Section 2.2.4.

2.2.1. Setup and Preliminaries

We consider continuous-time systems of the form

ẋ(t) = f(x(t), u(t), d(t)), x(0) = χ, (2.5a)
y(t) = h(x(t), u(t), v(t)) (2.5b)

with internal states x(t) ∈ X ⊆ Rn (0 ∈ X ), initial condition χ ∈ X , outputs y(t) ∈
Y ⊆ Rp (0 ∈ Y), and time t ≥ 0. The time-varying parameter u : R≥0 → U ⊆ Rm
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and the inputs2 d : R≥0 → D ⊆ Rq and v : R≥0 → V ⊆ Ro are measurable, locally
essentially bounded functions3 (with 0 ∈ U ,D,V), and we denote the set of such
functions as MU , MD, and MV , respectively. For the sake of conciseness, for two
input functions d ∈ MD and v ∈ MV we sometimes use w to denote the combined
input function w = (d, v) ∈ MD × MV .
The solution of the differential equation (2.5a) at t ≥ 0 for some initial state χ ∈ X
and input signals u ∈ MU and d ∈ MD is denoted by x(t, χ, u, d). Here, we
consider solutions in the extended sense, that is, x(t) = x(t, χ, u, d) is an absolutely
continuous function solving the integral equation x(t) = χ+

∫ t
0 f(x(τ), u(τ), d(τ))dτ ,

which satisfies (2.5a) almost everywhere (i.e., for all t ≥ 0, except on a set of measure
zero), see, e.g., [CL55, Sec. 2.1] for further technical details. The corresponding
output according to (2.5b) is denoted by y(t, χ, u, w) := h(x(t, χ, u, d), u(t), v(t))
for any input signal v ∈ MV . We sometimes consider the nominal output of the
system (2.5) where v ≡ 0, which we denote by yn(t, χ, u, d) := h(x(t, χ, u, d), u(t), 0).
We impose the following assumption on the vector field f .

Assumption 2.1. The function f : X × U × D → Rn satisfies f(0, 0, 0) = 0 and

|f(x1, u1, d1) − f(x2, u2, d2)| ≤ κ1 (|(x1, u1, d1) − (x2, u2, d2)|) (2.6)

for all x1, x2 ∈ X , all u1, u2 ∈ U , and all d1, d2 ∈ D, where κ1 : R≥0 → R≥0 is
continuous, non-decreasing, κ1(0) = 0, κ1(s) > 0 for all s > 0, and∫ 1

0

ds

κ1(3s)
= ∞,

∫ ∞

1

ds

κ1(3s)
= ∞. (2.7)

Assumption 2.1 implies a global uniform continuity property of f along with a max-
imum growth condition. It is essential for proving the converse Lyapunov theorem
for i-iIOSS in Section 2.2.3, where we note that the factor 3 in (2.7) is required for
technical reasons and without loss of generality. It replaces the usual assumption
of f being locally Lipschitz (which is not suitable in our case, compare Remark 2.7
below) and ensures global existence and uniqueness of solutions of (2.5). Inequal-
ity (2.6) together with the first equation in (2.7) is similar to the so-called Osgood
condition, which was originally proposed in [Osg98] to establish local uniqueness of
solutions of ordinary differential equations without employing a Lipschitz property.
The second equation in (2.7) ensures that these solutions exist globally in time. Note
that a similar condition is in fact necessary for the global existence of solutions to
the scalar differential equation ξ̇ = κ1(ξ), compare [Con95]. Valid functions κ1 that
satisfy Assumption 2.1 are, e.g., s 7→ s, s 7→ s ln(s+ 1), s 7→ (s+ 1) ln(s+ 1), com-
pare also [Con95; Lip00; Osg98]. While especially the second condition in (2.7) may

2Again, it should be noted that the naming and roles of the variables u, d, and v are such
that they are consistent with the notation used in this thesis, where u usually refers to known
inputs (e.g., control inputs), and d and v to unknown inputs affecting the dynamics (e.g.,
process disturbances) and the observed output (e.g., measurement noise), respectively, compare
Remark 2.1.

3See [Son90, Appendix C.1] for definitions and further details on standard technical terms related
to Lebesque measure theory.
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be a limitation in practice, we point out that global existence of solutions is often
assumed in the literature and significantly facilitates the exposition of our results.
The main properties of solutions of (2.5a) under Assumption 2.1 are summarized in
the following proposition, which is a straightforward extension of the results from
[Lip00; Bih56] by addressing the generic class of inputs considered here.

Proposition 2.1. Suppose that Assumption 2.1 is satisfied. Then, the ordinary dif-
ferential equation in (2.5a) admits a unique solution defined globally on R≥0 for all
χ ∈ X , all u ∈ MU , and all d ∈ MD.

To prove Proposition 2.1, we first derive a bound on the difference between trajec-
tories over a fixed time interval by adapting the results from [Lip00] and [Bih56].
This can also be interpreted as a continuity property of the flow of the vector field f
in (2.5a).

Lemma 2.1. Let Assumption 2.1 hold. Then, there exists some ρ ∈ K∞ such that
for each χ1, χ2 ∈ X , u1, u2 ∈ MU , and d1, d2 ∈ MD, there exists T > 0 such that

|x(t, χ1, u1, d1) − x(t, χ2, u2, d2)| ≤ ρ−1(ρ(c)et) (2.8)

for all t ∈ [0, T ) with

c := |χ1 − χ2| + Tκ1(3∥u1 − u2∥0:T ) + Tκ1(3∥d1 − d2∥0:T ). (2.9)

Proof. Consider arbitrary χ1, χ2 ∈ X , u1, u2 ∈ MU , d1, d2 ∈ MD. The existence
of the trajectories xi(t) = x(t, χi, ui, di), t ∈ [0, ti(χi, ui, di)) is ensured for some
ti(χi, ui, di) > 0, i = 1, 2 by continuity of f (Assumption 2.1) and Carathéodory’s
existence theorem (see, for example, [CL55, Th. 1.1, p. 43] and compare also [Mir23,
Ch. 1] and [Son90, App. C] for further details). Let T := mini∈1,2{ti(χi, ui, di)}.
Then, for all t ∈ [0, T ), the trajectories x1 and x2 satisfy

x1(t) − x2(t) = χ1 − χ2 +
∫ t

0
(f(x1(τ), u1(τ), d1(τ)) − f(x2(τ), u2(τ), d2(τ)))dτ.

Define ξ(t) = |x1(t) − x2(t)|, u∆ = u1 − u2, and d∆ = d1 − d2. By applying (2.6),
the triangle inequality, and the fact that κ1 is positive definite and non-decreasing,
we can deduce that

ξ(t) ≤ ξ(0) +
∫ t

0
(κ̄1(ξ(s)) + κ̄1(|u∆(s)|) + κ̄1(|d∆(s)|))ds (2.10)

with κ̄1(s) := κ1(3s). Note that∫ t

0
(κ̄1(|u∆(s)|) + κ̄1(|d∆(s)|))ds ≤ T (κ̄1(∥u∆∥0:T ) + κ̄1(∥d∆∥0:T )). (2.11)

By combining (2.10), (2.11), and the definition of c from (2.9), we obtain

ξ(t) ≤ c+
∫ t

0
κ̄1(ξ(s))ds. (2.12)
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We first assume that c > 0. Denote by U(t) the right-hand side of (2.12). Then,
U(0) = c and

U̇(t) = κ̄1(ξ(t)) ≤ κ̄1(U(t)). (2.13)

Now consider G(s) :=
∫ s

1
dr

κ̄1(r) for s > 0. By Assumption 2.1, lims→0+ G(s) = −∞
and lims→∞ G(s) = ∞. Furthermore, from the Leibniz integral rule, it follows that

d

dt
G(U(t)) = d

dt

∫ U(t)

1

dr

κ̄1(r)
= U̇(t)
κ̄1(U(t)) . (2.14)

The combination of (2.13) and (2.14) yields d
dt
G(U(t)) ≤ 1. An integration over

[0, t] leads to

G(U(t)) −G(U(0)) ≤ t ⇔ eG(U(t)) ≤ eG(U(0))et. (2.15)

Now define ρ(s) := eG(s) for all s > 0 and ρ(0) := 0. It follows that ρ ∈ K∞ (and
thus ρ−1 ∈ K∞). Since ξ(t) ≤ U(t) for all t ∈ [0, T ) and U(0) = c, from (2.15) and
the definition of ρ we can conclude that ξ(t) ≤ ρ−1(ρ(c)et) for all t ∈ [0, T ).
It remains to be shown that (2.8) also applies for c = 0. Performing the same steps
as before with c replaced by some ϵ > 0 leads to ξ(t) ≤ ρ−1(ρ(ϵ)et). Letting ϵ → 0
recovers (2.8) for c = 0 and thus concludes this proof.

Proof of Proposition 2.1. We note that Proposition 2.1 is an immediate consequence
of Lemma 2.1. First, we claim that solutions exist globally in time. Indeed, suppose
not. Then, there exist χ ∈ X , u ∈ MU , d ∈ MD, and some finite time T1 > 0
such that limt→T1 |x(t)| = ∞, where x(t) = x(t, χ, u, d). Applying Lemma 2.1 with
χ1 = χ, u1 = u, d1 = d, and χ2 = 0, u2 ≡ 0, d2 ≡ 0, it follows that (2.8) yields
|x(t)| ≤ ρ−1(ρ(|χ| + T1(κ̄1(∥u∥0:T1) + κ̄1(∥d∥0:T1)))et) for t ∈ [0, T1). The right-hand
side is bounded for t → T1, which contradicts finite escape time and hence implies
that solutions exist globally on R≥0.
It remains to show uniqueness of solutions. To this end, assume that x1(t) =
x(t, χ, u, d) and x2(t) = x(t, χ, u, d) represent two solutions of (2.5a) on the in-
terval [0, T2] for T2 > 0 with the same initial conditions χ ∈ X and inputs u ∈ MU
and d ∈ MD. It follows that c = 0 in (2.9) and |x1(t) − x2(t)| = 0 for all t ∈ [0, T2]
by (2.8), which implies uniqueness of solutions on [0, T2] and hence concludes this
proof.

2.2.2. i-iIOSS for systems with disturbed outputs

For general nonlinear systems in the form of (2.5) where the output equation is
subject to an additional nonlinear input v, a natural extension of the i-IOSS formu-
lations from (2.2)–(2.4) (that involve nominal outputs without dependency on v) is
to define a similar property with respect to the disturbed outputs as previously done
in [KM20; KM23]. To this end, we modify the i-IOSS property in (2.4) and transfer
it to the general continuous-time setting described in the previous section, which
leads to the following definition.
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Definition 2.1 (i-iIOSS with disturbed outputs). The system (2.5) is i-iIOSS (with
disturbed outputs) if there exist some α, αx, αw, αy ∈ K∞, and η ∈ (0, 1) such that

α(|x1(t) − x2(t)|)

≤ αx(|χ1 − χ2|)ηt +
∫ t

0
ηt−τ

(
αw(|w1(τ) − w2(τ)|) + αy(|y1(τ) − y2(τ)|)

)
dτ (2.16)

for all t ≥ 0, all χ1, χ2 ∈ X , all u ∈ MU , all d1, d2 ∈ MD, and all v1, v2 ∈ MV ,
where xi(t) = x(t, χi, u, di), yi(t) = y(t, χi, u, wi), and wi = (di, vi), i = 1, 2.

Due to the fact that we consider the disturbed outputs in (2.16), the bound also needs
to explicitly involve the input difference v1−v2, which is accomplished by considering
the difference in the combined disturbance inputs w1 − w2 = (d1, v1) − (d2, v2).
In the literature concerned with stability notions related to outputs, however, def-
initions with respect to nominal (undisturbed) outputs h(x, u, 0) predominate, see,
e.g., [SW97; ART20] for i-IOSS, [KSW01; CT08] for IOSS, [Ing01a] for integral
IOSS, or [Ang+04] for input-to-output stability. In the same way, we can define
i-iIOSS with nominal outputs.

Definition 2.2 (i-iIOSS with nominal outputs). The system (2.5) is i-iIOSS (with
nominal outputs) if there exist some α, αx, αd, αy ∈ K∞, and η ∈ (0, 1) such that

α(|x1(t) − x2(t)|)

≤ αx(|χ1 − χ2|)ηt +
∫ t

0
ηt−τ

(
αd(|d1(j) − d2(j)|) + αy(|y1(τ) − y2(τ)|)

)
dτ (2.17)

for all t ≥ 0, all χ1, χ2 ∈ X , all u ∈ MU , and all d1, d2 ∈ MD, where xi(t) =
x(t, χi, u, di) and yi(t) = yn(t, χi, u, di) = h(xi(t), ui(t), 0), i = 1, 2.

Because we consider the difference between the nominal outputs in the bound (2.17),
it suffices to consider the difference between the process disturbances d1 − d2. De-
tectability properties with respect to nominal outputs become particularly relevant
in applications if the true output measurements are corrupted by additive measure-
ment noise, compare [ART21; SW97]. In this special case, the above two i-iIOSS
notions are equivalent, as we show in the following proposition. However, if the
measurement noise v enters nonlinearly in (2.5b), it is beneficial to consider i-iIOSS
with respect to the disturbed outputs as this is in fact a stronger4 detectability
property than i-iIOSS with nominal outputs (Definition 2.2). This allows us to
construct (optimization-based) state estimators with strong robustness guarantees
that explicitly account for this type of measurement noise (compare Section 2.2.4
and Chapter 3), which is not possible under the weaker property of i-iIOSS with
nominal outputs.

4Note that this is intuitively clear because Definition 2.1 needs to hold for all possible functions
v1, v2, while Definition 2.2 needs to hold for one specific pair of inputs v1, v2 only, namely the
special case where v1 = v2 ≡ 0.



24 2.2. Incremental integral input/output-to-state stability

Proposition 2.2. The i-iIOSS property with disturbed outputs (Definition 2.1) is
strictly stronger than i-iIOSS with nominal outputs (Definition 2.2). If the output
equation in (2.5b) specializes to h(x, u, v) = h̃(x, u) +Ev for some real matrix E of
appropriate dimension, then Definitions 2.1 and 2.2 are equivalent.

Proof. The implication (2.16) ⇒ (2.17) is trivial by considering the input v1 = v2 ≡ 0
in (2.16).
We prove (2.17) ̸⇒ (2.16) by constructing a simple counterexample that satisfies
(2.17) but cannot satisfy (2.16). Consider the scalar system

ẋ(t) = d(t), x(0) = χ, (2.18a)
y(t) = x(t)(1 − v(t)) (2.18b)

with t ≥ 0, initial condition χ ∈ R, and inputs d, v ∈ MR. The system (2.18)
is trivially observable with respect to the nominal output, as y(t) = x(t) for all
t ≥ 0 under v ≡ 0. To see that it is also i-iIOSS (Definition 2.2), consider the two
solutions xi(t) = x(t, χi, di) producing the nominal outputs yi(t) = xi(t), i = 1, 2,
t ≥ 0 for some arbitrary initial conditions χ1, χ2 ∈ R and inputs d1, d2 ∈ MR. Now,
define the function U(x1, x2) = |x1 − x2|2. Computing the derivative of U along the
solutions x1(t) and x2(t) yields

U̇(x1(t), x2(t)) = 2(x1(t) − x2(t))⊤(ẋ1(t) − ẋ2(t))
≤ |x1(t) − x2(t)|2 + |d1(t) − d2(t)|2

for almost all t ≥ 0, where the last inequality followed by applying Young’s inequality
and the system dynamics (2.18a). To the right-hand side, we add 0 = (1+κ)(y1(t)−
y2(t) − (y1(t) − y2(t))) for some constant κ > 0. Recalling that y1(t) − y2(t) =
x1(t) − x2(t) for v1 = v2 ≡ 0 by (2.18b) and using the definition of U , we obtain

U̇(x1(t), x2(t)) ≤ −κU(x1(t), x2(t)) + |d1(t) − d2(t)|2 + (1 + κ)|y1(t) − y2(t)|2

for almost all t ≥ 0. By applying the standard comparison principle, we can infer
that

|x1(t) − x2(t)|2 ≤ e−κt|χ1 − χ2|2

+
∫ t

0
e−κ(t−τ)

(
|d1(τ) − d2(τ)|2 + (1 + κ)|y1(τ) − y2(τ)|2

)
dτ

for all t ≥ 0. Hence, the system (2.18) is i-iIOSS with nominal outputs (Defini-
tion 2.2) and satisfies (2.17) for all t ≥ 0 with η = e−κ ∈ (0, 1), α(s) = αx(s) =
αd(s) = s2, and αy(s) = (1 + κ)s2, s ≥ 0.
However, the system (2.18) cannot be i-iIOSS with disturbed outputs in the sense
of Definition 2.1, because the two solutions xi(t) = x(t, χi, di), i = 1, 2 with χ1 = 1
d1 ≡ 0, v1 ≡ 1 and χ2 = 0 d2 ≡ 0, v2 ≡ 1 produce x1(t)−x2(t) = 1 for all t ≥ 0, while
d1−d2 ≡ 0, v1−v2 ≡ 0 and y1(t)−y2(t) = x1(t)(1−v1(t))−x2(t)(1−v2(t)) = 0 for all
t ≥ 0. Consequently, there cannot exist K∞-functions α, αx, αw, αy, and η ∈ (0, 1)
such that (2.16) holds for all t ≥ 0.
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Now consider the case where the system is i-iIOSS with nominal outputs (Defini-
tion 2.2) and additionally h(x, u, v) = h̃(x, u)+Ev for some matrix E of appropriate
dimension. Then, we can exploit that for any values of u ∈ U , xi ∈ X , vi ∈ V ,
i = 1, 2, we have

αy(|h(x1, u, 0) − h(x2, u, 0)|)
= αy(|h(x1, u, 0) + E(v1 − v1) − h(x2, u, 0) + E(v2 − v2)|)
≤ αy(|h(x1, u, v1) − h(x1, u, v2)| + |E(v1 − v2)|)

≤ αy(2|h(x1, u, v1) − h(x1, u, v2)|) + αy

(
2
√
λmax(E⊤E)|v1 − v2|

)
,

where in the last inequality we have used the fact that for any K-function σ, it holds
that σ(a+ b) ≤ σ(2a) + σ(2b) for any a, b > 0. Since

|v1 − v2| = |(0, v1) − (0, v2)| ≤ |(d1, v1) − (d2, v2)| ≤ |w1 − w2|

for any di ∈ D and wi = (di, vi) for i = 1, 2, this implies that the system is also
i-iIOSS with disturbed outputs in the sense of Definition 2.1 with the K∞-function
αw(s) := 2 max

{
αd(s), αy

(
2
√
λmax(E⊤E) · s

)}
, s ≥ 0, and a simple re-definition of

αy ∈ K involving the additional factor 2, which finishes this proof.

In the proof of Proposition 2.2, we have shown that the system (2.18) is i-iIOSS
by constructing an i-iIOSS Lyapunov function (namely, the function U). This char-
acterization is formalized in Section 2.2.3 below. Note also that although Proposi-
tion 2.2 and its implications are stated for continuous-time i-iIOSS (Definitions 2.1
and 2.2), they directly carry over to the discrete-time case.
We close this section with the following remarks.

Remark 2.2 (Linear systems and i-iIOSS). Indeed, for the special case of linear sys-
tems, all the different notions of i-iIOSS, i-IOSS, and IOSS coincide5 and, more-
over, are equivalent to the standard definition of (linear) detectability, see, for exam-
ple [SW97] and compare also [KSW01, Example 2.5], [CT08, Sec. 3], and [KM20,
Sec. VI].

Remark 2.3 (Exponential function). In this thesis, we generally employ functions of
the form ηt for some η ∈ (0, 1) to characterize an exponential decrease with respect
to time t ≥ 0 (see, e.g., Definitions 2.1 and 2.2). This is in contrast to many
other works having a purely continuous-time setting that rather use e−kt for some
k > 0, since such functions naturally occur in the context of ordinary differential
equations, see, e.g., [PW96; Son98]. Obviously, these characterizations are fully
equivalent (simply set η = e−k); however, we use ηt to ensure consistency in the
notation between the continuous- and discrete-time MHE formulations discussed in
this thesis.

5Definitions 2.1 and 2.2 are equivalent in the presence of linear systems due to Proposition 2.2.
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2.2.3. Lyapunov characterizations of i-iIOSS

In the following, we propose two equivalent Lyapunov function characterizations of
i-iIOSS. Here, we focus on the stronger notion of i-iIOSS with disturbed outputs (in
the sense of Definition 2.1); the converse Lyapunov result (Theorem 2.1 below) is
stated for i-iIOSS with nominal outputs (Definition 2.2).

Definition 2.3 (i-iIOSS Lyapunov function). A function U : X × X → R≥0 is an
i-iIOSS Lyapunov function if it is continuous and there exist α1, α2, σw, σy ∈ K∞
and a constant η ∈ (0, 1) such that

α1(|χ1 − χ2|) ≤ U(χ1, χ2) ≤ α2(|χ1 − χ2|), (2.19a)

U(x1(t), x2(t))

≤ U(χ1, χ2)ηt +
∫ t

0
ηt−τ

(
σw(|w1(τ) − w2(τ)|) + σy(|y1(τ) − y2(τ)|)

)
dτ (2.19b)

for all t ≥ 0, all χ1, χ2 ∈ X , all u ∈ MU , all d1, d2 ∈ MD, and all v1, v2 ∈ MV ,
where xi(t) = x(t, χi, u, di), yi(t) = y(t, χi, u, wi), and wi = (di, vi), i = 1, 2.

The integral form of (2.16) and (2.19b) together with the continuity of U is motivated
by [Ang02; Ang09], originally employed to allow for a non-compact input set D,
where smooth converse Lyapunov theorems usually fail, compare [Ang02, Rem. 2.4]
and [LSW96, Sec. 8]. The exponential decrease in (2.16) and (2.19b) is motivated
by recent results in the discrete-time literature, where this is crucial to develop FIE
and MHE schemes with suitable stability properties, compare [AR21] and [Sch+23,
Sec. III]. In Chapter 3, we show that this carries over to the continuous-time setting.
Moreover, in Section 7.1.2, we provide sufficient conditions (in terms of LMIs) for the
construction of i-iIOSS Lyapunov functions for special classes of nonlinear systems.
We want to emphasize that considering an exponential decrease in Lyapunov co-
ordinates in Definition 2.3 is actually without loss of generality; in fact, (2.19b) is
equivalent to a more standard dissipation inequality as the following proposition
shows.

Proposition 2.3. The system (2.5) admits an i-iIOSS Lyapunov function according
to Definition 2.3 if and only if there exists a function W : X × X → R≥0 and
functions ᾱ1, ᾱ2, ᾱ2, σ̄w, σ̄y ∈ K∞ such that

ᾱ1(|χ1 − χ2|) ≤ W (χ1, χ2) ≤ ᾱ2(|χ1 − χ2|), (2.20a)

W (x1(t), x2(t)) −W (χ1, χ2)

≤
∫ t

0
(−ᾱ3(|x1(τ) − x2(τ)|) + σ̄w(|w1(τ) − w2(τ)|) + σ̄y(|y1(τ) − y2(τ)|)) dτ

(2.20b)

for all t ≥ 0, all χ1, χ2 ∈ X , all u ∈ MU , all d1, d2 ∈ MD, and all v1, v2 ∈ MV ,
where xi(t) = x(t, χi, u, di), yi(t) = y(t, χi, u, wi), and wi = (di, vi), i = 1, 2.
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To prove the “only if” part, we exploit the specific structure of the i-iIOSS Lyapunov
function—namely, that the right-hand side of (2.19b) is also the solution of a sim-
ple scalar initial value problem. To prove the “if” part, we require two additional
auxiliary lemmas: a comparison result and its exponential equivalent.

Lemma 2.2. Suppose there exists a function W as defined in the statement of Propo-
sition 2.3 satisfying (2.20). Consider some α3 ∈ K∞ such that α3 is globally Lip-
schitz and α3(s) ≤ ᾱ3(ᾱ−1

2 (s)) for all s ≥ 0. For any χ1, χ2 ∈ X , u ∈ MU ,
d1, d2 ∈ MD, and v1, v2 ∈ MV , define xi(t) = x(t, χi, u, di), yi(t) = y(t, χi, u, wi),
wi = (di, vi), i = 1, 2, t ≥ 0, w∆ := w1 − w2, and y∆ := y1 − y2. Let ξ : R≥0 → R≥0
be the solution to the initial value problem

ξ̇(t) = −α3(ξ(t)) + σ̄w(|w∆(t)|) + σ̄y(|y∆(t)|), (2.21a)
ξ(0) = W (χ1, χ2). (2.21b)

Then, W (x1(t), x2(t)) ≤ ξ(t) for all t ≥ 0.

Proof. We start by noting that any K∞-function can be lower bounded by a glob-
ally Lipschitz K∞-function so that existence of a suitable α3 is guaranteed, compare
[Ang09]. Together with the fact that w∆ and y∆ represent measurable, locally essen-
tially bounded functions of time, we can infer that there exists a unique function ξ
defined globally on R≥0 that solves the initial value problem (2.21) (this follows
by a combination of classical existence and uniqueness results in the Carathéodory
setting, see, for example, [CL55, Sec. 1.2, Sec. 2.1]) and compare also Proposi-
tion 2.1. Now, suppose for contradiction that there exists some t = t1 ∈ (0,∞)
such that W (x1(t1), x2(t1)) > ξ(t1). Hence, we can define t2 = max{t ∈ [0, t1) :
W (x1(t), x2(t)) ≤ ξ(t)}, and since W and ξ are continuous in t, it follows that
W (x1(t2), x2(t2)) = ξ(t2) and W (x1(t), x2(t)) > ξ(t) for t ∈ (t2, t1]. By application
of (2.20b) and (2.20a) and the definition of α3, we obtain

W (x1(t), x2(t)) −W (x1(t2), x2(t2))

≤
∫ t

t2
(−α3(W (x1(τ), x2(τ))) + σ̄w(|w∆(τ)|) + σ̄y(|y∆(τ)|)) dτ

<
∫ t

t2
(−α3(ξ(τ)) + σ̄w(|w∆(τ)|) + σ̄y(|y∆(τ)|)) dτ

= ξ(t) − ξ(t2).

Since W (x1(t2), x2(t2)) = ξ(t2), this implies that W (x1(t), x2(t)) < ξ(t) for t ∈
(t2, t1], which is a contradiction and hence proves our claim.

Lemma 2.3. Consider the initial value problem (2.21). There exist functions ρ ∈ K∞
and σ̂w, σ̂y ∈ K∞ such that q := ρ(ξ) satisfies

q̇(t) ≤ − q(t) + σ̂w(|w∆(t)|) + σ̂y(|y∆(t)|) (2.22)

for almost all t ≥ 0.
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Proof. The proof utilizes similar arguments as in [SW97, Lem. 10]. Namely, fol-
lowing [PW96, Lem. 11 and 12], there exists a continuously differentiable function
ρ ∈ K∞ such that ρ′(0) = 0 and ρ′(s)α3(s) ≥ 2ρ(s) for all s ≥ 0, where ρ′ := dρ/ds.
Evaluating the time derivative of q = ρ(ξ) with ξ satisfying (2.21) leads to

q̇(t) = d

dt
ρ(ξ(t)) = ρ′(ξ(t))ξ̇(t)

= ρ′(ξ(t))(−α3(ξ(t)) + σ̄w(|w∆(t)|) + σ̄y(|y∆(t)|))

= −ρ′(ξ(t))α3(ξ(t))
2 + ρ′(ξ(t))

(
−α3(ξ(t))

2 + σ̄w(|w∆(t)|) + σ̄y(|y∆(t)|)
)
.

(2.23)

We distinguish between the following two cases: 1) When ξ(t) ≥ α−1
3 (2σ̄w(|w∆(t)|)+

2σ̄y(|y∆(t)|)), it follows that

ρ′(ξ(t))
(

−α3(ξ(t))
2 + σ̄w(|w∆(t)|) + σ̄y(|y∆(t)|)

)
≤ 0;

2) if instead ξ(t) < α−1
3 (2σ̄w(|w∆(t)|) + 2σ̄y(|y∆(t)|)), we obtain

ρ′(ξ(t))
(

−α3(ξ(t))
2 + σ̄w(|w∆(t)|) + σ̄y(|y∆(t)|)

)
≤ σ̂w(|w∆(t)|) + σ̂y(|y∆(t)|)

for some σ̂w, σ̂y ∈ K∞. (To see this, first note that −α3(ξ(t))/2 ≤ 0 for all t ≥ 0.
Second, since ρ′ is continuous, ρ′(s) > 0 for all s > 0, and ρ′(0) = 0 (compare [PW96,
Lem. 11]), there exists ρ̄ ∈ K∞ such that ρ̄(s) ≥ ρ′(s) for all s ≥ 0. Suitable
K∞-functions σ̂w, σ̂y can then be constructed by exploiting standard K-function
properties.) From (2.23), the combination of both cases, and the definition of q, we
can conclude that (2.22) holds for almost all t ≥ 0, which finishes this proof.

We are now in a position to prove Proposition 2.3.

Proof of Proposition 2.3. We start by showing (2.20) ⇒ (2.19). Define U(·) :=
ρ(W (·)) with ρ as in Lemma 2.3. From Lemma 2.2 and Lemma 2.3, it follows that

U(x1(t), x2(t)) = ρ(W (x1(t), x2(t))) ≤ ρ(ξ(t)) = q(t) (2.24)

for all t ≥ 0. Let ω : R≥0 → R≥0 be the solution to the initial value problem

ω̇(t) = −ω(t) + σ̂w(|w∆(t)|) + σ̂y(|y∆(t)|), ω(0) = q(0).

From the standard comparison principle, we know that q(t) ≤ ω(t) for all t ≥ 0,
where ω(t) is given by

ω(t) = ω(0)e−t +
∫ t

0
e−(t−τ)

(
σ̂w(|w∆(τ)|) + σ̂y(|y∆(τ)|)

)
dτ (2.25)

for all t ≥ 0. However, since

ω(0) = q(0) = ρ(ξ(0)) = ρ(W (χ1, χ2)) = U(χ1, χ2),
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from (2.24) and (2.25), it follows that

U(x1(t), x2(t)) ≤ U(χ1, χ2)e−t +
∫ t

0
e−(t−τ)

(
σ̂w(|w∆(τ)|) + σ̂y(|y∆(τ)|)

)
dτ.

Hence, U satisfies (2.19b) with η = e−1, σw = σ̂w, σy = σ̂y and (2.19a) with
α1 = ρ ◦ ᾱ1 ∈ K∞ and α2 = ρ ◦ ᾱ2 ∈ K∞, where “◦” means function composition.
It remains to show that (2.19) ⇒ (2.20). Define k := − ln η (i.e., such that e−k = η)
and note that for all t ≥ 0, the right-hand side of (2.19b) is the solution to the
initial value problem

ż(t) = −kz(t) + σw(|w∆(t)|) + σy(|y∆(t)|), z(0) = U(χ1, χ2).

Consequently, U(x1(t), x2(t)) ≤ z(t) for all t ≥ 0. However, by the fundamental
theorem of calculus, it follows that

U(x1(t), x2(t)) − U(χ1, χ2) ≤ z(t) − z(0) =
∫ t

0

dz

dτ
(τ)dτ

=
∫ t

0
(−kz(τ) + σw(|w∆(τ)|) + σy(|y∆(τ)|)) dτ

≤
∫ t

0
(−kU(x1(τ), x2(τ)) + σw(|w∆(τ)|) + σy(|y∆(τ)|)) dτ.

Therefore, W (x1, x2) = U(x1, x2) satisfies (2.20) with ᾱ1 = α1, ᾱ2 = α2, ᾱ3(s) =
kα1(s), σ̄w = σw, and σ̄y = σy, which finishes this proof.

Remark 2.4 (Relation between discounted and non-discounted notions). A key ad-
vantage of the discrete-time i-IOSS counterpart is that discounted summation and
discounted maximization are in some sense equivalent, compare [KM20; ART21].
This, however, does not carry over to the continuous-time setting (the discounted
integral in (2.16) could indeed be transferred to a discounted L∞-norm bound, but
not vice versa, unless strong regularity assumptions on the input d are enforced).
As a result, the proposed notion from Definition 2.1 implies i-IOSS in an L∞-to-L∞

sense with time-discounting (similar to (2.3) and [ART21, Def. 2.4]) and without
discounting as in (2.2) and defined in [SW97, Def. 22], compare also Section 2.2.4.
Investigating some converse implications may be subject of future research, see also
Chapter 8 for further details.

We now show equivalence between i-iIOSS and its Lyapunov characterization. To
establish that the Lyapunov function is necessarily continuous, however, we need
to restrict ourselves to output equations hn(x, u) = h(x, u, 0) and hence consider
i-iIOSS with nominal outputs (Definition 2.2). Note that this setup is standard in
the literature in the context of stability notions involving outputs and correspond-
ing converse Lyapunov results, see, e.g., [SW97; ART20; KSW01; CT08; Ing01a;
Ang+04] and refer to the discussion in Section 2.2.2. Furthermore, we require an
additional uniform continuity condition.

Assumption 2.2. The function hn(x, u) = h(x, u, 0) satisfies

|hn(x1, u) − hn(x2, u)| ≤ κ2(|x1 − x2|) (2.26)

for some κ2 ∈ K∞ for all x1, x2 ∈ X uniformly in u ∈ U .
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The following result establishes equivalence of i-iIOSS with nominal outputs (Defi-
nition 2.2) and existence of a continuous i-iIOSS Lyapunov function.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. The system (2.5) is i-iIOSS with
nominal outputs (Definition 2.2) if and only if there exists a function U : X × X →
R≥0 and functions α1, α2, σd, σy ∈ K∞ and η ∈ (0, 1) such that

α1(|χ1 − χ2|) ≤ U(χ1, χ2) ≤ α2(|χ1 − χ2|), (2.27a)

U(x1(t), x2(t)) ≤ U(χ1, χ2)ηt

+
∫ t

0
ηt−τ

(
σd(|d1(τ) − d2(τ)|) + σy(|y1(τ) − y2(τ)|)

)
dτ (2.27b)

for all t ≥ 0, all χ1, χ2 ∈ X , all u ∈ MU , and all d1, d2 ∈ MD, where xi(t) =
x(t, χi, u, di), i = 1, 2 and yi(t) = yn(t, χi, u, di) = h(xi(t), ui(t), 0), i = 1, 2.

Before proving Theorem 2.1, we want to briefly comment on the case of i-iIOSS with
disturbed outputs.

Remark 2.5 (i-iIOSS with disturbed outputs: additive output disturbances). In case
the output equation specializes to h(x, u, v) = hn(x, u) +Ev for some matrix E, the
i-iIOSS Lyapunov function candidate defined in the proof of Theorem 2.1 using the
nominal output function hn = h(x, u, 0) turns out to be a valid Lyapunov function
for i-iIOSS with disturbed outputs (Definition 2.3). This becomes apparent by ap-
plying the same technique used in the second part of the proof of Proposition 2.2 to
the decrease condition (2.27b), leading to the decrease condition (2.19b) with dis-
turbed outputs. This fact is actually not surprising in view of Proposition 2.2 and,
consequently, yields the following Corollary of Theorem 2.1.

Corollary 2.1. Let Assumptions 2.1 and 2.2 hold and suppose that h(x, u, v) =
hn(x, u) + Ev for some real matrix E of appropriate dimension. Then, the sys-
tem (2.5) is i-iIOSS with disturbed outputs (Definition 2.1) if and only if there
exists an i-iIOSS Lyapunov function in the sense of Definition 2.3.

Proof. Note that Proposition 2.2 and Theorem 2.1 already imply that the sys-
tem (2.5) is i-iIOSS with disturbed outputs (Definition 2.1) if and only if there
exists an i-iIOSS Lyapunov function satisfying (2.27) (with nominal outputs). The
fact that the latter implies the existence of an i-iIOSS Lyapunov function in the
sense of Definition 2.3 (with disturbed outputs) is a consequence of the arguments
outlined in Remark 2.5; the converse direction follows by considering (2.19) for the
special case of v1 = v2 ≡ 0.

Remark 2.6 (i-iIOSS with disturbed outputs: the general case). In the general case
where the input v enters the output equation nonlinearly, it is still possible to tailor
(parts of) Theorem 2.1 and its proof to i-iIOSS for disturbed outputs. Specifically,
we can establish sufficiency of an i-iIOSS Lyapunov function (Definition 2.3) for
i-iIOSS (Definition 2.1). For the necessity part, we can prove that the i-iIOSS
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Lyapunov function candidate satisfies the properties (2.19a) and (2.19b); however,
showing that it is also necessarily continuous is an open problem (due to fact that
some arguments used in the proof of Claim 2.1 below do not apply in this case) and
constitute an interesting subject of future work.

We now proceed with the proof of Theorem 2.1.

Proof of Theorem 2.1. Part I (Sufficiency): The sufficiency part is straightforward
and follows by applying the bounds (2.27a) to (2.27b), which directly yields (2.17).
Part II (Necessity): The proof uses and combines similar arguments as in previ-
ous converse theorems and Lyapunov function constructions, in particular [ART21;
Ing01b]; continuity of the Lyapunov function is proven in a different fashion by
invoking Assumptions 2.1 and 2.2, see Claim 2.1 below.
For arbitrary χ1, χ2 ∈ X , we consider the following Lyapunov function candidate6

U(χ1, χ2) := sup
t≥0,u,d1,d2

η−t/2
(
α(|x(t, χ1, u, d1) − x(t, χ2, u, d2)|)

−
∫ ∞

0
ηt−τ 2αd(|d1(τ) − d2(τ)|)dτ

−
∫ t

0
ηt−ταy(|yn(τ, χ1, u, d1) − yn(τ, χ2, u, d2)|)dτ

)
(2.28)

and start by establishing the bounds (2.27a). For the term α(|x(t, χ1, u, d1) −
x(t, χ2, u, d2)|) in (2.28), we can directly use the i-iIOSS estimate (2.17), which
yields

U(χ1, χ2) ≤ sup
t≥0,u,d1,d2

αx(|χ1 − χ2|)ηt/2 = αx(|χ1 − χ2|),

that is, the upper bound in (2.27a) with α2 = αx. The lower bound follows by
considering the candidate inputs d1 = d2 and t = 0, leading to α1 = α in (2.27a).
We make the following claim, which is proven below.

Claim 2.1. The function U in (2.28) is continuous on X × X .

It remains to establish the dissipation inequality (2.27b). To this end, consider
ζ1, ζ2 ∈ X , u ∈ MU , d1, d2 ∈ MD, yielding the trajectories zj(t) := x(t, ζj, u, dj)
with j = 1, 2 for t ≥ 0. We obtain

U(z1(t), z2(t))

= sup
t̄≥0,ū,d̄1,d̄2

η−t̄/2
(
α(|x(t̄, z1(t), ū, d̄1) − x(t̄, z2(t), ū, d̄2)|)

−
∫ ∞

0
ηt̄−τ 2αd(|d̄1(τ) − d̄2(τ)|)

−
∫ t̄

0
ηt̄−ταy(|yn(τ, z1(t), ū, d̄1) − yn(τ, z2(t), ū, d̄2)|)dτ

)
. (2.29)

6The input functions u and d1, d2 in (2.28) are maximized over the sets MU and MD, respectively,
which is omitted for brevity.
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For two functions ū, u defined on [0,∞), let ū♯tu denote their concatenation at some
fixed time t ≥ 0, i.e.,

ū♯tu(τ) :=
u(τ), τ ∈ [0, t]
ū(τ − t), τ ∈ (t,∞).

Hence, in (2.29), we can infer that

α(|x(t̄, z1(t), ū, d̄1) − x(t̄, z2(t), ū, d̄2)|)
= α(|x(t̄+ t, ζ1, ū♯tu, d̄1♯td1) − x(t̄+ t, ζ2, ū♯tu, d̄2♯td2)|). (2.30)

Similarly,∫ ∞

0
ηt̄−τ 2αd(|d̄1(τ) − d̄2(τ)|)dτ =

∫ ∞

0
ηt̄+t−τ 2αd(|d̄1♯td1(τ) − d̄2♯td2(τ)|)dτ

−
∫ t

0
ηt̄+t−τ 2αd(|d1(τ) − d2(τ)|)dτ (2.31)

and ∫ t̄

0
ηt̄−ταy(|yn(τ, z1(t), ū, d̄1) − yn(τ, z2(t), ū, d̄2)|)dτ

=
∫ t̄+t

0
ηt̄+t−ταy(|yn(t̄+ t, ζ1, ū♯tu, d̄1♯td1) − yn(t̄+ t, ζ2, ū♯tu, d̄2♯td2)|)dτ

−
∫ t

0
ηt̄+t−ταy(|yn(τ, ζ1, u, d1) − yn(τ, ζ2, u, d2)|)dτ. (2.32)

Now define t̂ := t̄+ t. Consequently, U(z1(t), z2(t)) in (2.29) can be bounded using
the substitutions from (2.30)–(2.32) and the fact that η ≤ √

η ∈ (0, 1) as

U(z1(t), z2(t))

≤ sup
t̂≥0,û,d̂1,d̂2

η(−t̂+t)/2
(
α(|x(t̂, ζ1, û, d̂1) − x(t̂, ζ2, û, d̂2)|)

−
∫ ∞

0
ηt̂−τ 2αd(|d̂1(τ) − d̂2(τ)|)dτ

−
∫ t̂

0
ηt̂−ταy(|yn(t̂, ζ1, û, d̂1) − yn(t̂, ζ2, û, d̂2)|)dτ

)
+
∫ t

0
ηt−τ

(
2αd(|d1(τ) − d2(τ)|) + αy(|yn(τ, ζ1, u, d1) − yn(τ, ζ2, u, d2)|)

)
dτ

≤ √
ηtU(ζ1, ζ2)

+
∫ t

0

√
ηt−τ

(
2αd(|d1(τ) − d2(τ)|) + αy(|yn(τ, ζ1, u, d1) − yn(τ, ζ2, u, d2)|)

)
dτ,

which establishes the dissipation inequality (2.27b) by a suitable redefinition of η
and hence concludes this proof.

To prove Claim 2.1 (i.e, continuity of the Lyapunov function candidate (2.28)), we
first need an additional lemma.
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Lemma 2.4. Let Assumptions 2.1 and 2.2 hold. For every T, rχ, rd > 0, there exist
constants Rx(T, rχ, rd) > 0 and Ry(T, rχ, rd) > 0 such that

|x(t, χ1, u, d1) − x(t, χ2, u, d1)| ≤ Rx(T, rχ, rd),
|yn(t, χ1, u, d2) − yn(t, χ2, u, d2)| ≤ Ry(T, rχ, rd)

for all t ∈ [0, T ], all χ1, χ2 ∈ X satisfying |χ1 − χ2| ≤ rχ, all u ∈ MU , and all
d1, d2 ∈ MD satisfying

∫∞
0 µ−sα(|d1(s) − d2(s)|)ds ≤ rd for some α ∈ K∞ with

α(s) ≥ κ1(3s) for all s ≥ 0 and µ ∈ (0, 1).

Proof. For i = 1, 2, let xi(t) = x(t, χi, u, di) and yi(t) = yn(t, χi, u, di), t ≥ 0, where
we note that Proposition 2.1 applies due to satisfaction of Assumption 2.1. Define
d∆ := d1 − d2. We can invoke the same arguments as in the proof of Lemma 2.1,
where (2.11) can be replaced by∫ t

0
κ1(3|d∆(s)|)ds ≤

∫ ∞

0
µ−sα(|d∆(s)|)ds ≤ rd,

exploiting that µ−s ≥ 1 for all s ≥ 0. Consequently, we obtain c = rχ + rd in (2.9),
which by (2.8) implies that

|x1(t) − x2(t)| ≤ ρ−1(ρ(rχ + rd)eT ) =: Rx(T, rχ, rd)

uniformly for all t ∈ [0, T ]. For the second part, the application of (2.5b) in combi-
nation with Assumption 2.2 leads to

|y1(t) − y2(t)| = |hn(x1(t), u(t)) − hn(x2(t), u(t))| ≤ κ2(|x1(t) − x2(t)|)
≤ κ2(Rx(T, rχ, rd)) =: Ry(T, rχ, rd)

for all t ∈ [0, T ], which finishes this proof.

Proof of Claim 2.1. The proof uses mostly similar arguments as in [ART21, Th. 3.5],
with variations due to the continuous-time setting and the class of inputs considered
(in particular, Lemmas 2.1 and 2.4). It consists of two parts. First, we show that
choosing (χ1, χ2) in a compact set implies that the right-hand side of (2.28) is the
same when restricting t and (d1, d2) to suitable sets; then, we use this property to
establish continuity of U .
Part I. Define B(C) := {(χ1, χ2) ∈ X × X : 1/C ≤ |χ1 − χ2| ≤ C} for C ≥ 1 and
consider (χ1, χ2) ∈ B(C). Then, for any ϵ > 0, there exist inputs uϵ ∈ MU and
dϵ

1, d
ϵ
2 ∈ MD and a time tϵ ≥ 0 such that

α(|χ1 − χ2|) ≤ U(χ1, χ2) (2.33)

≤ ϵ+ η−tϵ/2
(
α(|x(tϵ, χ1, u

ϵ, dϵ
1) − x(tϵ, χ2, u

ϵ, dϵ
2)|)

−
∫ ∞

0
ηtϵ−τ 2αd(|dϵ

1(τ) − dϵ
2(τ)|)dτ

−
∫ tϵ

0
ηtϵ−ταy(|yn(τ, χ1, u

ϵ, dϵ
1) − yn(τ, χ2, u

ϵ, dϵ
2)|)dτ

)
≤ ϵ+ η−tϵ/2

(
αx(|χ1 − χ2|)ηtϵ −

∫ ∞

0
ηtϵ−ταd(|dϵ

1(τ) − dϵ
2(τ)|)dτ

)
,

(2.34)
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where the last inequality follows from i-iIOSS (2.17). Consequently,

α(|χ1 − χ2|) ≤ ϵ+ ηtϵ/2αx(|χ1 − χ2|). (2.35)

Choose ϵ ≤ ϵ̄(C) := α(1/C)/2 and recall that 1/C ≤ |χ1 − χ2| ≤ C. Thus, (2.35)
yields α(1/C)/2 ≤ ηtϵ/2αx(C), which leads to

tϵ ≤ 2 logη

(
α(1/C)
2αx(C)

)
=: T (C), (2.36)

where 0 < α(1/C)
2αx(C) < 1. From (2.34) and the fact that ϵ ≤ ϵ̄(C), we also obtain that

∫ ∞

0
ηtϵ−ταd(|dϵ

1(τ) − dϵ
2(τ)|)dτ ≤ αx(C)ηtϵ − 1

2α(1/C)ηtϵ/2 ≤ αx(C).

Since tϵ ∈ [0, T (C)], it follows that ηtϵ ≥ ηT (C); hence,∫ ∞

0
η−ταd(|dϵ

1(τ) − dϵ
2(τ)|)dτ ≤ αx(C)η−T (C) =: rd(C).

As a result, we can infer that (dϵ
1, d

ϵ
2) ∈ Bd(C), where

Bd(C) :=
{

(d1, d2) ∈ MD × MD :
∫ ∞

0
η−ταd(|dϵ

1(τ) − dϵ
2(τ)|)dτ ≤ rd(C)

}
.

Part II. Now consider some χ̃1, χ̃2 ∈ X with χ̃1 ̸= χ̃2. Set C = 2 max{|χ̃1 −
χ̃2|, 1/|χ̃1 − χ̃2|} ≥ 1. From the first part of this proof, we know that for (χ1, χ2) ∈
B(C), there exist ϵ ∈ (0, ϵ̄(C)], uϵ ∈ MU , (dϵ

1, d
ϵ
2) ∈ Bd(C), and tϵ ∈ [0, T (C)] such

that (2.34) holds. Define

x1(t) := x(t, χ1, u
ϵ, dϵ

1), y1(t) := yn(t, χ1, u
ϵ, dϵ

1),
x2(t) := x(t, χ2, u

ϵ, dϵ
2), y2(t) := yn(t, χ2, u

ϵ, dϵ
2),

x̃1(t) := x(t, χ̃1, u
ϵ, dϵ

1), ỹ1(t) := yn(t, χ̃1, u
ϵ, dϵ

1),
x̃2(t) := x(t, χ̃2, u

ϵ, dϵ
2), ỹ2(t) := yn(t, χ̃2, u

ϵ, dϵ
2)

for all t ∈ [0, T (C)]. The trajectories x̃1(t) and x̃2(t) satisfy

U(χ̃1, χ̃2) ≥ η−tϵ/2
(
α(|x̃1(tϵ) − x̃2(tϵ)|) −

∫ ∞

0
ηtϵ−τ 2αd(|dϵ

1(τ) − dϵ
2(τ)|)dτ

−
∫ tϵ

0
ηtϵ−ταy(|ỹ1(τ) − ỹ2(τ)|)dτ

)
. (2.37)

The combination of (2.33) and (2.37) yields

U(χ1, χ2) − U(χ̃1, χ̃2)

≤ ϵ+ η−tϵ/2
(
α(|x1(tϵ) − x2(tϵ)|) − α(|x̃1(tϵ) − x̃2(tϵ)|)

+
∫ tϵ

0
ηtϵ−τ (αy(|ỹ1(τ) − ỹ2(τ)|) − αy(|y1(τ) − y2(τ)|))dτ

)
. (2.38)
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Without loss of generality, we assume that7 αd(s) ≥ κ1(3s) for all s ≥ 0. By
Lemma 2.4, there exist Rx, Ry > 0 such that

max{|x1(t) − x2(t)|, |x̃1(t) − x̃2(t)|} ≤ Rx(T (C), C, rd(C)) =: RC
x ,

max{|y1(t) − y2(t)|, |ỹ1(t) − ỹ2(t)|} ≤ Ry(T (C), C, rd(C)) =: RC
y

uniformly for all t ∈ [0, T (C)]. Recall that α, αy in (2.38) are continuous; hence,
they are uniformly continuous on the compact sets [0, RC

x ] and [0, RC
y ], respectively.

From [All+17, Prop. 20], there exist α̂, α̂y ∈ K∞ such that

|α(s1) − α(s2)| ≤ α̂(|s1 − s2|), s1, s2 ∈ [0, RC
x ], (2.39)

|αy(s1) − αy(s2)| ≤ α̂y(|s1 − s2|), s1, s2 ∈ [0, RC
y ]. (2.40)

Evaluating the absolute value of the right-hand side of (2.38), using the triangle
inequality, applying (2.39) and (2.40) followed by the reverse triangle inequality and
then the standard one lead us to

U(χ1, χ2) − U(χ̃1, χ̃2) ≤ ϵ+ η−tϵ/2
(
α̂ (|x1(tϵ) − x̃1(tϵ)| + |x2(t) − x̃2(tϵ)|)

+
∫ tϵ

0
ηtϵ−τ α̂y (|y1(τ) − ỹ1(τ)| + |y2(τ) − ỹ2(τ)|) dτ

)
.

(2.41)

By applying Lemma 2.1 and similar steps as in the proof of Lemma 2.4, it follows
that

|xi(t) − x̃i(t)| ≤ ρ−1(ρ(|χi − χ̃i|)eT (C)), i = 1, 2, (2.42)
|yi(t) − ỹi(t)| ≤ κ2(ρ−1(ρ(|χi − χ̃i|)eT (C))), i = 1, 2 (2.43)

for all t ∈ [0, T (C)]. Hence, from (2.41), using that α(|a + b|) ≤ α(2a) + α(2b) for
any α ∈ K and a, b ≥ 0 in conjunction with the bounds from (2.42) and (2.43) and
the facts that η−tϵ/2 ≤ η−T (C)/2 and

∫ tϵ

0 ηtϵ−τdτ ≤ −1/ ln η, we can infer that there
exist γx, γy ∈ K satisfying

U(χ1, χ2) − U(χ̃1, χ̃2)
≤ ϵ+ γx(|χ1 − χ̃1|) + γx(|χ2 − χ̃2|) + γy(|χ1 − χ̃1|) + γy(|χ2 − χ̃2|)
≤ ϵ+ γ(|χ1 − χ̃1|) + γ(|χ2 − χ̃2|),

where γ(s) := γx(s) + γy(s) for all s ≥ 0. Letting ϵ → 0 and applying a symmetric
argument (recall that (χ̃1, χ̃2) ∈ B(C) by the definition of C) let us conclude that

|U(χ1, χ2) − U(χ̃1, χ̃2)| ≤ γ(|χ1 − χ̃1|) + γ(|χ2 − χ̃2|). (2.44)

Since B(C) contains all pairs (x1, x2) within a neighborhood of (χ̃1, χ̃2), (2.44) im-
plies that U is continuous at each (χ̃1, χ̃2) ∈ X × X for χ̃1 ̸= χ̃2. It remains to show

7If this is violated, simply replace αd in (2.17) by a suitable ᾱd ∈ K∞ that majorizes both αd and
κ1(3s).
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that U is also continuous at (χ̃, χ̃). To this end, consider any (χ1, χ2) ∈ X × X ;
since U(χ̃, χ̃) = 0, it follows that

|U(χ1, χ2) − U(χ̃, χ̃)| = U(χ1, χ2) ≤ αx(|χ1 − χ2|) ≤ αx(|χ1 − χ̃| + |χ̃− χ2|)
≤ αx(2|χ1 − χ̃|) + αx(2|χ2 − χ̃|),

which implies that U is continuous at (χ̃, χ̃). Hence, U is continuous on X × X ,
which finishes this proof.

Remark 2.7 (Input functions). Part I of the proof of Claim 2.1 gives rise to the fact
that (dϵ

1, d
ϵ
2) ∈ Bd(C), i.e., the inputs dϵ

1 and dϵ
2 are such that the weighted “energy”

of its difference is located in a ball of radius rd centered at the origin. However, this
implies no information about the absolute range of d1 and d2, which prevents the
use of a local Lipschitz property of f to bound the evolution of the difference between
state trajectories in the proof of Claim 2.1 below (2.38) and in (2.42). In contrast,
the global nature of Assumption 2.1 allows the derivation of such a bound, and the
conditions in (2.7) ensure that it is finite for any finite t.

2.2.4. Robust observers and i-iIOSS

In this section, we establish necessity of i-iIOSS (Definition 2.1) for the existence of a
general observer mapping that satisfies a desirable robust stability property (namely,
an ISS-like bound on the estimation error in a time-discounted L2-to-L∞ sense). In
this context, we let u include all known exogenous signals (such as control inputs)
and w = (d, v) all unknown inputs, with d affecting the evolution of the system
in (2.5a) (such as process disturbances) and v the output measurements in (2.5b)
(i.e., measurement noise).
Let the set MY contain all measurable, locally essentially bounded functions defined
on [0,∞) taking values in Y . For a function z defined on [0,∞) and any fixed
t ≥ 0, we denote by zt the truncated signal given by zt(τ) := z(τ), τ ∈ [0, t) and
zt(τ) := 0, τ ∈ [t,∞).
We consider the following general definition of a robustly stable state observer.

Definition 2.4 (Robustly stable state observer). The mapping

O : R≥0 × X × MU × MW × MY → X (2.45)

is a robustly globally asymptotically stable (RGAS) observer for the system (2.5)
if there exist functions β, βx, βw, βy ∈ K∞ and a constant ρ ∈ (0, 1) such that the
estimate

x̂(t) = O(t, χ̄, ut, w̄t, ȳt), x̂(0) = χ̄ (2.46)
satisfies

β(|x̂(t) − x(t)|) ≤ βx(|χ̄− χ|)ρt +
∫ t

0
ρt−τ

(
βw(|w̄(τ) −w(τ)|) + βy(|ȳ(τ) − y(τ)|)

)
dτ

(2.47)
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for all t ≥ 0, all χ̄, χ ∈ X , u ∈ MU , w̄, (d, v) ∈ MW = MD ×MV , and all ȳ ∈ MY ,
where x(τ) = x(τ, χ, u, d) and y(τ) = y(τ, χ, u, w) for all τ ∈ [0, t]. If additionally
β(s) ≥ C1s

r and βx(s) ≤ C2s
r for some C1, C2, r > 0, then the state observer is

robustly globally exponentially stable (RGES).

Definition 2.4 implies that at any time t ≥ 0, the mapping O causally8 reconstructs
the state of system (2.5) using (the past values of) some nominal disturbance w̄, some
measured signal ȳ, the known inputs u, and some initial estimate χ̄. Considering
ȳ ̸= y provides an additional degree of robustness and accounts for the case where
the output model h in (2.5b) is not exact, e.g., when the data are first transformed
or traverse additional networks not captured by h, see [KM20] for a more detailed
discussion. Note that for the classical case with w̄ ≡ 0 and ȳ = y, the RGAS
estimate (2.47) reduces to

β(|x̂(t) − x(t)|) ≤ βx(|χ̄− χ|)ρt +
∫ t

0
ρt−τβw(|w(τ)|)dτ, t ≥ 0. (2.48)

The integral term in (2.48) can be viewed as the energy of the true disturbance
signal w under fading memory and thus has a reasonable physical interpretation,
compare also [Son98; PW96].
Clearly, Definition 2.4 can be used to characterize stability properties of conven-
tional full-order state observers; however, due to its general nature, it is particularly
useful in the context of state observers that do not admit a convenient state-space
representation (such as MHE and FIE). This is mainly because the property (2.48)
directly implies that |x̂(t) − x(t)| → 0 if |w(t)| → 0 for t → ∞ (i.e., the intuitive
and important property that vanishing disturbances lead to a vanishing estimation
error), which otherwise would require an extra analysis of the respective estimation
scheme as in, e.g., [Mül17], compare also [ART21; KM20] for similar discussions in
a discrete-time setting.
Definition 2.4 provides a time-discounted L2-to-L∞ bound for the estimation error;
however, the discount factor in (2.47) also permits a direct derivation of an L∞-to-
L∞ error bound as shown in the following.

Proposition 2.4. Suppose there exists a state estimator for system (2.5) that is RGAS
in the sense of Definition 2.4. Then, there exist functions ψ ∈ KL and γw, γy ∈ K∞
such that

|x̂(t) − x(t)| ≤ max{ψ(|χ̄− χ|, t), γw(∥w̄ − w∥0:t), γy(∥ȳ − y∥0:t)} (2.49)

for all t ≥ 0, all χ̄, χ ∈ X , u ∈ MU , w̄, (d, v) ∈ MW = MD ×MV , and all ȳ ∈ MY ,
where x(τ) = x(τ, χ, u, d) and y(τ) = y(τ, χ, u, w) for all τ ∈ [0, t] and w = (d, v). If
it is RGES, then there exist C > 0 and ρ ∈ (0, 1) such that (2.49) holds with ψ(s, t)
replaced by Csρt and suitable functions γw, γy ∈ K∞.

8The observer is causal due to the use of the truncated signals in (2.46).
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Proof. The proof is straightforward and follows by noting that∫ t

0
ρt−τβw(|w̄(τ) − w(τ)|)dτ ≤

∫ t

0
ρt−τdτ · ess sup

s∈[0,t]
{βw(|w̄(s) − w(s)|)}

= ρt − 1
ln ρ βw(∥w̄ − w∥0:t) ≤ − 1

ln ρβw(∥w̄ − w∥0:t),

where −1/ ln ρ ≥ 0 since ρ ∈ (0, 1). From the same arguments, we also have that∫ t

0
ρt−τβy(|ȳ(τ) − y(τ)|)dτ ≤ − 1

ln ρβy(∥ȳ − y∥0:t).

Consequently, using the fact that a + b + c ≤ max{3a, 3b, 3c} for a, b, c ≥ 0, the
RGAS property from (2.47) implies that

β(|x̂(t) − x(t, χ, u, w)|)

≤ max
{

3βx(|χ̂− χ|)ρt,− 3
ln ρβw(∥w̄ − w∥0:t),−

3
ln ρβy(∥ȳ − y∥0:t)

}
. (2.50)

The application of ψ(s, t) := β−1(3βx(s)ρt), γw(s) := β−1(− 3
ln ρ
βw(s)), and γy(s) :=

β−1(− 3
ln ρ
βy(s)) shows that (2.50) implies (2.49), where we note that ψ ∈ KL and

γw, γy ∈ K∞.
When the state estimator is additionally RGES, we can exploit in (2.50) that β(s) ≥
C1s

r and βx(s) ≤ C2s
r with C1, C2, r from Definition 2.4, which yields ψ(s, t) ≤(

3C2
C1

) 1
r sρ

t
r , γw(s) ≤

(
− 3

C1 ln ρ
βw(s)

) 1
r , and γy(s) ≤

(
− 3

C1 ln ρ
βy(s)

) 1
r (recall that

s 7→ s
1
r is strictly increasing in s ≥ 0). Consequently, we can choose C :=

(
3C2

C1

) 1
r

and ρ̃ := ρ
1
r ∈ (0, 1). A suitable redefinition of ρ, γw, and γy establishes our claim

and hence concludes this proof.

Consequently, RGAS as characterized in Definition 2.4 combines the advantages of
classical and integral ISS properties: it is applicable and ensures a finite estimation
error bound for both (unbounded) disturbance signals with finite energy (by (2.47))
and persistent (non-vanishing) bounded disturbances with infinite energy (by appli-
cation of Proposition 2.4).
Overall, RGAS is a very desirable property of observers, which we refer to in many
of our results contained in this thesis (in continuous and discrete time; for a discrete-
time analog of Definition 2.4, see [ART21, Def. 2.3] and [KM20, Def. 3]). However,
this raises the question of which detectability property the system must actually
have in order for such observers to exist. This question is answered (in the context
of continuous-time systems) by the following proposition and is in fact our proposed
i-iIOSS notion from Definition 2.1.

Proposition 2.5. The system (2.5) admits an RGAS observer in the sense of Defi-
nitions 2.4 only if it is i-iIOSS (Definition 2.1).
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The proof follows similar lines as those of [ART21, Prop. 2.6] and [KM20, Prop. 3],
which establish necessity of RGAS (in a time-discounted max-based form [ART21,
Def. 2.3]) for the system being i-IOSS (as in (2.3)).

Proof of Proposition 2.5. Consider χ1, χ2 ∈ X , u ∈ MU , and d1, d2 ∈ MD, v1, v2 ∈
MV , yielding xi(t) = x(t, χi, u, di) and yi(t) = y(t, χi, u, wi), i = 1, 2 for all t ≥ 0
with wi = (di, vi), i = 1, 2. Suppose that the observer O (2.46) is designed to
reconstruct the trajectory x1 using χ̄ = χ1, w̄ = w1, ȳ = y1. By application
of (2.47), it follows that β(|x̂(t) − x1(t)|) = 0 for all t ≥ 0. Now assume that this
certain design of O is used to reconstruct the trajectory x2. Then, since x̂(t) = x1(t)
for all t ≥ 0, the estimate (2.47) directly yields (2.16) with α = β, αx = βx, αw = βw,
αy = βy, and because χ1, χ2, u, w1, w2 were arbitrary, the system (2.5) is i-iIOSS,
which finishes this proof.

2.3. Summary

In this chapter, we focused on a system-theoretic approach for characterizing de-
tectability of nonlinear systems, namely i-IOSS. We considered the original asymp-
totic-gain formulation of i-IOSS and discussed two modern variants that employ
additional discounting and a max- or sum-based formulation, which became stan-
dard detectability concepts in the context of optimization-based state estimation
(in particular, MHE) in the recent years. While these properties could be shown
to coincide for the case of discrete-time systems, this is generally not the case for
continuous-time systems, and we must carefully distinguish between them.
We proposed the notion of i-iIOSS for continuous-time systems, which essentially
constitutes a time-discounted integral variant of i-IOSS. Here, we stated two defini-
tions of i-iIOSS involving the nominal and the disturbed outputs of the underlying
system. We showed that these definitions are equivalent for the special case of ad-
ditive measurement noise, and that the latter constitutes a stronger property in the
context of general nonlinear systems (with a potentially nonlinear dependence on
measurement noise), consequently allowing for stronger robustness guarantees for
state estimators (which are the main topic of this thesis). We proposed a Lyapunov
function characterization of i-iIOSS and showed that a dissipation inequality with
exponential decrease can be considered without loss of generality. Moreover, we
provided a converse Lyapunov theorem for the weaker case of i-iIOSS with nominal
outputs.
Finally, we proposed a particular notion of RGAS, characterizing robust stability
with respect to process disturbances and measurement noise in a time-discounted
L2-to-L∞ sense. This constitutes a useful stability property for general observers, as
it combines the advantages of classical ISS and iISS characteristics: it is applicable
for persistent disturbance signals that have a small magnitude but infinite energy,
and for those that may have an infinite magnitude at certain points but otherwise
finite (small) energy. Indeed, we found that the proposed i-iIOSS notion is necessary
for the existence of state estimators that fulfill this robust stability property.
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Overall, the results in this chapter reveal that i-iIOSS is useful to characterize de-
tectability of general nonlinear continuous-time systems, particularly in the context
of RGAS observers for which it is even necessary. The proposed definitions of i-iIOSS
and RGAS form a fundamental basis for our results in Section 3.2, where we con-
sider and analyze a particular MHE scheme for nonlinear continuous-time systems.
We close this chapter by noting that constructive conditions (in terms of LMIs)
to obtain i-IOSS and i-iIOSS Lyapunov functions for discrete- and continuous-time
systems that certify exponential i-(i)IOSS are provided in Sections 7.1.



3. Robust stability

In this chapter, we focus on the stability and robustness properties of MHE in
the context of general detectable nonlinear systems under process disturbances and
measurement noise. Since the application of MHE inevitably requires some sort of
sampling strategy—that is, specifying discrete time points at which the optimization
is performed—schemes for discrete-time systems have recently been the main focus
in the literature. For this reason, in Section 3.1 we first introduce the basics of MHE
in discrete time and discuss general features and characteristics. We also briefly out-
line the recently developed Lyapunov-based MHE framework from [Sch+23, Sec. III],
which is a fundamental basis for many of the results developed in this thesis. In
Section 3.2, we then focus on a Lyapunov-based MHE scheme for continuous-time
systems in detail, relying on tools that we developed in Chapter 2. In Section 3.3,
we discuss general advantages of Lyapunov-based MHE approaches and compare
it to recent results in the field of nonlinear MHE. Finally, we illustrate the appli-
cability of Lyapunov-based MHE in Section 3.4 by means of numerical examples
from the literature, involving a chemical reactor process and a 12-state quadrotor
model. Here, the verification methods proposed in Chapter 7.1 allow us to apply
the Lyapunov-based MHE schemes with valid theoretical guarantees under practical
conditions.
Disclosure: The following chapter is based upon and in parts literally taken from our
previous publications [SM24b] and Sections III-D and V in [Sch+23] (we explicitly
point out that Sections III-B and III-C in [Sch+23] are not part of this thesis, see
also Footnote 1 in Section 1.3). A detailed description of the contributions of each
author is given in Appendix A.

3.1. Basics of MHE

We consider the discrete-time counterpart of the continuous-time system from (2.5),
where for the sake of conciseness we consider the generalized disturbance input w
describing both the process disturbance and the measurement noise, compare Chap-
ter 2 for more details. The overall state-space model reads

x(t+ 1) = f(x(t), u(t), w(t)), x(0) = χ, (3.1a)
y(t) = h(x(t), u(t), w(t)) (3.1b)

with discrete time t ∈ I≥0, state x(t) ∈ Rn, initial condition χ ∈ Rn, control input
u(t) ∈ Rm, disturbance input w(t) ∈ Rq, and noisy output measurement y(t) ∈ Rp.
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The overall goal of state estimation is to produce an accurate estimate x̂(t) of the true
unknown system state x(t) using only the available input-output data (u, y), prior
knowledge of the model, and some initial estimate χ̂. In the presence of process
disturbances and measurement noise, it is moreover essential to ensure a certain
degree of robustness, such as the implication that small disturbances |w(t)|, t ∈ I≥0
results in small estimation errors |x̂(t) − x(t)|, t ∈ I≥0, compare also Section 2.2.4.
In this respect, MHE has proven to be a powerful tool that provides these desired
characteristics. A typical MHE scheme considers past input-output measurements
obtained from the system in (3.1) in a window of (fixed) length N ∈ I≥0, which can
be conveniently expressed as

ut = {ut(j)}N−1
j=0 , ut(j) = u(t−N + j), j ∈ I[0,N−1], (3.2)

yt = {yt(j)}N−1
j=0 , yt(j) = y(t−N + j), j ∈ I[0,N−1] (3.3)

for any time t ∈ I≥N . Given a suitably defined cost function J(·), the nonlinear
program (NLP) underlying classical MHE schemes to be solved at each time t ∈ I≥N

can be formulated as follows:

min
x̂t,ŵt

J(x̂t, ŵt, ŷt, t) (3.4a)

s.t. x̂t(j + 1) = f(x̂t(j), ut(j), ŵt(j)), j ∈ I[0,N−1], (3.4b)
ŷt(j) = h(x̂t(j), ut(j), ŵt(j)), j ∈ I[0,N−1], (3.4c)
x̂t(j) ∈ X , j ∈ I[0,N ], (3.4d)
ŵt(j) ∈ W , ŷt(j) ∈ Y , j ∈ I[0,N−1]. (3.4e)

Here, the decision variables are the sequences x̂t = {x̂t(j)}N
j=0 and ŵt = {ŵt(j)}N−1

j=0
that contain estimates of the states1 and the disturbances over the horizon, respec-
tively, estimated at time t. They (uniquely) define a sequence of output estimates
ŷt = {ŷt(j)}N−1

j=0 under the output equation2 in (3.4c). The functions f and h in
(3.4b) and (3.4c) correspond to the system model in (3.1), which we assume to be
perfectly known. The constraints in (3.4d) and (3.4e) can be used to incorporate
additional a priori knowledge on the domain of the system, which can significantly
improve the estimation results, compare [RMD20, Sec. 4.4]. Here, the sets X ⊆ Rn,
W ⊆ Rq, and Y ⊆ Rp typically follow from the physical nature of the system, for
example due to non-negativity of certain physical quantities such as partial pressures

1The description of the NLP in (3.4) corresponds to a multiple shooting (or non-condensed)
formulation, where the decision variables involve the complete state sequence x̂t. Alternatively,
one could eliminate all decision variables of the sequence x̂t except the initial state x̂t(0) by
recursively applying the system dynamics (3.1a), which corresponds to a single shooting (or
condensed) approach. In practice, multiple shooting methods are usually preferred to create
and exploit sparsity of the NLP, which renders the optimization algorithm more numerically
robust, see [WVD14, Sec. II] and [Rib+20], and compare also [RMD20, Sec. 8.5]. While the
formulation has no influence on the theoretical analysis, we use multiple shooting here because
it allows for a more compact notation.

2Note that in this thesis, we do not treat the estimated output sequence ŷt as a decision variable
of the NLP (3.4), since it is completely determined by the sequences x̂t, ut, and ŵt using (3.4c).
This represents a slight abuse of the notation commonly used in numerical optimization, but
increases the readability and interpretability of our methods and results.
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and absolute temperatures, or mechanically imposed limits on joint angles or mea-
surement devices. The ability to incorporate such information is an advantageous
feature of optimization-based state estimation approaches compared to conventional
state observers, where this is not easily possible and which therefore may not pro-
vide physically plausible estimates (especially in transient phases), compare also
the simulation example in Section 3.4.1 and the discussion in Section 4.2.5. If no
such sets are known a priori, they can simply be chosen as X = Rn, W = Rq, and
Y = Rp, in which case the constraints (3.4d) and (3.4e) can simply be omitted from
the optimization.
The cost function used in (3.4a) typically takes the general form

J(x̂t, ŵt, ŷt, t) = Γt(x̂t(0), x̄(t−N)) +
N−1∑
j=0

L(ŵt(j), ŷt(j) − yt(j)), (3.5)

where we recall that yt is the sequence of output measurements obtained from the
system in (3.1) over the current estimation horizon, see (3.3). The cost function
in (3.5) consists of two parts: first, the (possibly time-varying) prior weighting
Γt : Rn × Rn → R≥0, which ideally accounts for the neglected data over I[0,t−N−1]
and acts as regularization term using a given prior estimate x̄(t − N); second, the
stage cost L : Rq × Rp → R≥0, which penalizes the estimated disturbance ŵt(j)
and the output fitting error ŷt(j) − yt(j), j ∈ I[t−N,t−1]. Usually, one designs Γt and
L positive definite and radially unbounded in its arguments, which consequently
renders the cost function J radially unbounded in the (condensed) decision variables.
Under additional continuity assumptions of the functions f and h, this ensures that
the estimation problem in (3.4) admits a (not necessarily unique) globally optimal
solution at each time t ∈ I≥N , compare [RMD20, Sec. 4.2].
Note that the cost function in (3.5) forms the prediction form of the estimation
problem, since the most recent measurement y(t) is excluded. This is typically
done in theoretical works to simplify the analysis and notation, however, can in
general easily be extended to the filtering form of the estimation problem (taking
into account the most recent measurement y(t)), see [RMD20, Ch. 4] for a discussion
on this topic.

Remark 3.1 (Output estimates). In the MHE literature, the estimated output ŷt(j)
in (3.4c) is often restricted to exactly match the measured output of the real sys-
tem yt(j) by imposing ŷt(j) = yt(j), j ∈ I[1,Nt] as an additional constraint in
the problem (3.4), see, e.g., [RMD20; Mül17; AR19b; All20; Hu24]. Under the
assumption that the output equation in (3.1b) is subject to additive measurement
noise v, this is a reasonable approach, as the estimated measurement noise v̂t(j) =
yt(j) − h(x̂t(j), ut(j), 0) is equal to the fitting error of MHE, and thus directly ac-
counted for within the penalty for the estimated disturbance ŵt(j) = (d̂t(j), v̂t(j)).
However, we are interested in more general systems where the measurement noise can
enter the output equation nonlinearly, compare also the discussion in Section 2.2.2.
In this case, trying to enforce a hard output constraint could lead to feasibility issues
in practice due to potential model inaccuracies. To prevent this, we avoid such a
constraint and instead include an additional term in the cost function that penalizes
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the output fitting error ŷt(j) − yt(j), compare also [KM23, Rem. 8]. Note that this
formulation was recently also adopted in [Ale25].

We denote a minimizer to the optimization problem (3.4) by (x̂∗
t , ŵ

∗
t ), and the cor-

responding estimated output sequences by ŷ∗
t . The resulting state estimate x̂(t) at

time step t is then given by the endpoint of the estimated state sequence x̂∗
t , i.e.,

x̂(t) = x̂∗
t (N). The optimization problem (3.4) is applied in a receding horizon fash-

ion, i.e., at each time step t ∈ I≥N , the current state estimate x̂(t) is obtained by
solving (3.4) based on the N most recent output measurements. When t ∈ I[0,N−1],
we solve the corresponding FIE problem, where N in (3.4) is replaced by t. To
simplify the notation, in the following we usually address both cases simultaneously
by replacing N in (3.4) with Nt = min{t, N}.
Early works concerned with the stability analysis of nonlinear MHE schemes rely on
certain observability conditions, compare [MR95; MM95; RRM03; ABB08]. In re-
cent years, however, the notion of i-IOSS has become the standard for characterizing
nonlinear detectability in this context (see Chapter 2), enabling significant advances
in MHE theory, compare, for example, [RJ12; Ji+16; Mül17; RMD20; AR21; KM23;
Hu24; Ale25], and see Section 3.3 for a detailed overview of the historic development.
In [Sch+23, Sec. III], we developed a Lyapunov-based MHE framework, where the
i-IOSS Lyapunov function characterizing the detectability of the system directly
serves as N -step Lyapunov function for MHE, see [Sch+23, Thm. 1, Cor. 1]. This
crucially relies on the following discounted cost function being used in (3.4a):

J(x̂t, ŵt, ŷt, t) = ηNΓ(x̂t(0), x̄(t−N)) +
N−1∑
j=0

ηN−j−1L(ŵt(j), ŷt(j) − yt(j)) (3.6)

with the discount factor η ∈ (0, 1), quadratic penalties Γ(x, x̄) = |x − x̄|2P and
L(w,∆y) = |w|2Q + |∆y|2R for some positive definite weighting matrices P , Q, R,
and the filtering prior3 x̄(t−N) = x̂(t−N). The cost function in (3.6) essentially
constitutes a standard least squares objective under additional fading memory, i.e.,
more recent measurements and disturbances are weighted more heavily in the cost
function than older ones. This Lyapunov-based MHE approach has many theoretical
advantages and ultimately leads to much less restrictive conditions than comparable
approaches, see Section 3.3 for a detailed discussion. The key condition to apply
[Sch+23, Thm. 1, Cor. 1] and hence ensure robust stability of MHE is, however, that
the cost function parameters η, P,Q,R are chosen in accordance with the i-IOSS
Lyapunov function. Hence, in order to apply the theoretical results in practice, such
an i-IOSS Lyapunov function must first be found, which is generally a non-trivial
task and hence drastically limits its applicability.
Here, our methods developed in Chapter 7 become particularly relevant, which en-
able the systematic computation of i-IOSS Lyapunov functions by numerically solv-
ing certain LMI conditions. Consequently, suitable cost function parameters η, P ,
Q, R that inherently ensure robust stability of MHE can easily be computed. In

3Wording according to [RMD20, Sec. 4.3.3]. Alternative choices for selecting the prior estimate
are discussed in more detail in Section 6.3.3.
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fact, our verification methods from Chapter 7 thus transform the disadvantage of
the scheme from [Sch+23, Sec. III] into a strong advantage, since a time-consuming
tuning of the cost function can also be avoided, compare also Remark 3.4 below
regarding tuning possibilities.
Due to the numerous advantageous properties of the Lyapunov-based MHE frame-
work for discrete-time systems (resulting from the combination of the results from
[Sch+23, Sec. III] and Chapter 7), we will now develop and analyze a corresponding
approach for continuous-time systems in the following section, heavily relying on
our results from Chapter 2. Here, it turns out that the continuous-time Lyapunov-
based MHE framework has advantages over the discrete-time one if the original
physical system evolves in continuous-time (which is usually the case in practice),
especially concerning the sampling scheme and required detectability verification,
see Section 3.3 below for a detailed discussion.

3.2. Continuous-time Lyapunov-based MHE

In this section, we focus on MHE for general nonlinear continuous-time systems.
Specifically, we propose a Lyapunov-based MHE scheme with a discounted least
squares cost function (Section 3.2.2) and establish robust global exponential stability
of the estimation error in a time-discounted L2-to-L∞ sense (Section 3.2.3). Here,
we employ the notion of i-iIOSS as introduced in Chapter 2 to characterize the
underlying detectability property.

3.2.1. Setup

We consider the continuous-time system from (2.5), where we for the sake of concise-
ness consider the generalized disturbance input w that describes both the process
disturbance and the measurement noise, see Chapter 2 for more details. The overall
state-space model therefore reads

ẋ(t) = f(x(t), u(t), w(t)), x(0) = χ, (3.7a)
y(t) = h(x(t), u(t), w(t)), (3.7b)

where we recall that t ≥ 0 is the time, x(t) ∈ X ⊆ Rn are the states, χ ∈ X is
the initial condition, and y(t) ∈ Y ⊆ Rp are the noisy output measurements. The
(known) control input u and the (unknown) disturbance input w are measurable,
locally essentially bounded functions taking values in U ⊆ Rm and W ⊆ Rq, and
we denote the set of such functions as MU and MW , respectively. The mappings
f : X × U × W → Rn and h : X × U × W → Y constitute the system dynamics and
output equation. In the following, we assume that f and h are jointly continuous
and that X and W are closed.
For any initial state χ ∈ X , we denote the solution of (3.7a) at a time t ≥ 0
driven by the control u ∈ MU and the disturbance w ∈ MW by x(t, χ, u, w), and
the corresponding output signal by y(t, χ, u, w) := h(x(t, χ, u, w), u(t), w(t)). In the
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following, we assume that solutions of (3.7) are unique, defined globally on R≥0, and
satisfy x(t, χ, u, w) ∈ X and y(t, χ, u, w) ∈ Y for all t ≥ 0 for all χ ∈ X , u ∈ MU ,
and w ∈ MW .
Since we are interested in an optimization-based method for (nonlinear) state esti-
mation, we inevitably have to employ some sort of sampling strategy. To this end,
let T ⊂ R≥0 be a set containing (arbitrary) distinct time instants. Given some a
priori estimate χ̂ of the unknown initial condition χ, the overall goal is to compute,
at each sampling time ti ∈ T , the estimate x̂(ti) of the true system state x(ti). In
the next section, we provide conditions under which the resulting estimation error
converges exponentially (compare Remark 2.3) to a neighborhood around the origin
by means of the following definition.

Definition 3.1 (RGAS, RGES). A state estimator for system (3.7) is robustly globally
asymptotically stable (RGAS) if there exist functions β, βx, βw ∈ K∞ and a constant
ρ ∈ (0, 1) such that the estimated state x̂ with x̂(0) = χ̂ satisfies

β(|x̂(ti) − x(ti, χ, u, w)|) ≤ βx(|χ̂− χ|)ρti +
∫ ti

0
ρti−τβw(|w(τ)|)dτ (3.8)

for all ti ∈ T , all initial conditions χ̂, χ ∈ X , all controls u ∈ MU , and all distur-
bances w ∈ MW . If additionally β(s) ≥ C1s

r and βx(s) ≤ C2s
r for some C1, C2, r >

0, then the state estimator is robustly globally exponentially stable (RGES).

Note that Definition 3.1 slightly differs from the property introduced in Defini-
tion 2.4, as we consider (3.8) only pointwise for all ti ∈ T (and not for all t ≥ 0
as in (2.47)). This is natural in an optimization context, since the estimates are
produced at certain time instants and not continuously, compare also [MM95]. How-
ever, also note that all the beneficial properties implied by RGAS as discussed in
Section 2.2.4 still apply.

Remark 3.2 (Pointwise error bound). Extensions to account for a pure continuous-
time stability notion as in Definition 2.4 can be easily deduced by predicting the
estimated state between two consecutive samples ti, e.g., using the nominal system
dynamics or an additional auxiliary observer, compare Chapter 4.

3.2.2. Design of the MHE scheme

The MHE scheme presented below relies on the detectability property of the system
in (3.7), where we employ the notion of i-iIOSS from Definition 2.1—more precisely,
its Lyapunov function characterization from Definition 2.3, see Chapter 2 for more
details on i-iIOSS and its use in the context of nonlinear detectability. Here, we
restrict ourselves to the special case of exponential detectability, that is, we assume
that the functions α1, α2, σw, σy in (2.19a) and (2.19b) are of quadratic form.
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Assumption 3.1 (Exponential detectability). System (3.7) admits a quadratically
bounded i-iIOSS Lyapunov function U according to Definition 2.3 satisfying

|χ1 − χ2|2P ≤ U(χ1, χ2) ≤ |χ1 − χ2|2P , (3.9a)

U(x1(t), x2(t)) ≤ U(χ1, χ2)ηt +
∫ t

0
ηt−τ

(
|w1(τ) − w2(τ)|2Q + |y1(τ) − y2(τ)|2R

)
dτ

(3.9b)

with P , P ,Q,R ≻ 0 for all t ≥ 0, χ1, χ2 ∈ X , u ∈ MU , and w1, w2 ∈ MW .

Note that the requirement of exponential detectability is a standard condition for
robust stability of MHE, ensuring a linear contraction of the estimation error over a
(finite) horizon, compare, e.g., [RMD20; AR21; Sch+23; KM23; Hu24]. Moreover,
assuming additive measurement noise, by using the same reasoning as in the proofs
of Theorem 2.1 and Corollary 2.1, one can show that Assumption 3.1 is equivalent
to the system (3.7) being exponentially i-iIOSS with disturbed outputs (compare
Definition 2.1), which in turn can be shown to be necessary for the existence of
RGES observers by suitable adapting the proof of Proposition 2.5. However, it
should be noted that in case the measurement noise enters the output equation
nonlinearly, there might be a gap between Assumption 3.1 and the system being
exponentially i-iIOSS (with disturbed outputs), compare Remark 2.6.
In Section 7.1.2, we provide sufficient conditions (in terms of LMIs) for constructing
a quadratic i-iIOSS Lyapunov function U satisfying (3.9). Assumption 3.1 can be
relaxed to asymptotic detectability (Definition 2.3) if the FIE problem is considered,
compare Remark 3.8 below.
Let the initial estimate χ̂ ∈ X be given. At any sampling time ti ∈ T , the proposed
MHE scheme considers the past input and output trajectories of the system (3.7)
within the moving time interval [ti − Tti

, ti] of length Tti
= min{ti, T} for some

T > 0. Let uti
: [0, Tti

) → U and yti
: [0, Tti

) → Y denote the currently involved
segments of the input and output trajectories of system (3.7), which are defined as

uti
(τ) := u(ti − Tti

+ τ), τ ∈ [0, Tti
), (3.10)

yti
(τ) := y(ti − Tti

+ τ, χ, u, w), τ ∈ [0, Tti
). (3.11)

Then, the optimal state trajectory on the interval [ti − Tti
, ti] is obtained by solving

the following optimization problem:

min
χ̂ti ,ŵti

J(χ̂ti
, ŵti

, ŷti
, ti) (3.12a)

s.t. x̂ti
(τ) = x(τ, χ̂ti

, uti
, ŵti

), τ ∈ [0, Tti
], (3.12b)

ŷti
(τ) = y(τ, χ̂ti

, uti
, ŵti

), τ ∈ [0, Tti
), (3.12c)

x̂ti
(τ) ∈ X , τ ∈ [0, Tti

], (3.12d)
ŵti

(τ) ∈ W , ŷti
(τ) ∈ Y , τ ∈ [0, Tti

). (3.12e)

The decision variables χ̂ti
and ŵti

: [0, Tti
) → W denote the estimates of the state at

the beginning of the horizon and the disturbance signal over the horizon, respectively,
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estimated at time ti (where ŵti
is minimized over all measurable, locally essentially

bounded functions mapping from [0, Tti
) to W). Given the input trajectory seg-

ment uti
in (3.10), these decision variables (uniquely) determine the estimated state

and output trajectories x̂ti
and ŷti

via (3.12b) and (3.12c) as functions defined on
[0, Tti

] and [0, Tti
), respectively. In (3.12a), we consider the discounted objective

J(χ̂ti
, ŵti

, ŷti
, ti) = ηTti Γ(χ̂ti

, x̄(ti − Tti
)) +

∫ Tti

0
ηTti −τL(ŵti

(τ), ŷti
(τ) − yti

(τ))dτ
(3.13)

with quadratic prior weighting Γ(χ, x̄) = 2|χ−x̄|2
P

and stage cost L(w,∆y) = 2|w|2Q+
|∆y|2R, compare Section 3.1 and Remark 2.3. Here, x̄(ti − Tti

) is a prior estimate
that is specified below and the parameters η, P ,Q,R are from Assumption 3.1.

Remark 3.3 (Discounting). The use of exponential discounting in (3.13) establishes a
direct link between the detectability property (Assumption 3.1), the MHE scheme (via
the cost function (3.13)), and the desired stability property (RGES, see Definition 3.1
and Theorem 3.1 below). It is motivated by recent time-discounted MHE approaches
for discrete-time systems, which, compared to their non-discounted counterparts,
allow the direct derivation of stronger and less conservative robustness guarantees
by leveraging this particular structural connection, compare, e.g., [KM18; KM23;
Hu24; Sch+23] and see also the discussion in Section 3.3.

Remark 3.4 (Tuning). We point out that fixing the weighting matrices P ,Q,R in
the MHE objective in (3.13) to the values from the i-iIOSS Lyapunov function is in
fact without loss of generality and therefore does not restrict any tuning possibilities.
In particular, the scaled Lyapunov function Ũ(x1, x2) = KU(x1, x2) with

K :=
(
max{λmax(P , P̃ ), λmax(Q, Q̃), λmax(R, R̃)}

)−1
(3.14)

satisfies4 Assumption 3.1 with P ,Q,R replaced by arbitrary positive definite matrices
P̃ , Q̃, R̃ and P replaced by KP , compare also [Sch+23, Rem. 1] for a similar discus-
sion in a discrete-time setting. Note that this also allows for choosing the weights
in (3.13) time-varying (e.g., based on nonlinear Kalman filter update recursions) if
uniform bounds are either known a priori or imposed online.
Moreover, we point out that η in (3.13) can be replaced by any η̄ ∈ [η, 1), since the
dissipation inequality (3.9b) for a given i-iIOSS Lyapunov function U is still a valid
dissipation inequality for U if η is replaced by η̄ ∈ [η, 1). Throughout this section,
we choose the parameters η, P ,Q,R in (3.13) according to those from the i-iIOSS
Lyapunov function from Assumption 3.1 to simplify the notation.

Note that the continuous-time MHE problem in (3.12) and (3.13) is in fact an
infinite-dimensional optimization problem (in contrast to MHE formulations in dis-
crete time, compare Section 3.1). A standard approach to address such problems

4Generally, note here that |x|2A ≤ λmax(A, B)|x|2B for any real vector x and any A, B ≻ 0 of
appropriate dimensions.
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are direct methods that essentially transform them into a finite-dimensional opti-
mization problem, which can then be solved using tailored numerical optimization
algorithms, see [RMD20, Ch. 8] for further details. In this case, a global solution
to the (discretized) MHE problem exists under Assumption 3.1, since Γ and L are
positive definite (due to positive definiteness of P ,Q,R) and radially unbounded in
the decision variables and the sets X and W are closed.
We denote a minimizer to (3.12) and (3.13) by (χ̂∗

ti
, ŵ∗

ti
), and the corresponding

optimal state trajectory by x̂∗
ti

(τ) = x(τ, χ̂∗
ti
, uti

, ŵ∗
ti

), τ ∈ [0, Tti
]. The resulting

state estimate at sampling instant ti ∈ T is then given by

x̂(ti) := x̂∗
ti

(Tti
). (3.15)

Furthermore, we define the estimated state trajectory x̂(t), t ∈ [0, ti] as the piece-
wise continuous function resulting from the concatenation of optimal trajectory seg-
ments according to

x̂(t) :=
x̂

∗
k(t)(t− k(t) + Tk(t)), t ∈ (0, ti]
χ̂ t = 0

(3.16)

for all ti ∈ T , where k(t) is the sampling time associated with t defined by

k(t) := min
k∈{k∈T :k≥t}

k. (3.17)

We use the estimated state trajectory x(t) in (3.16) to define the prior estimate x̄(t)
appearing in the cost function (3.13); more specifically, we select

x̄(ti − Tti
) = x̂(ti − Tti

), ti ∈ T . (3.18)

Note that this choice corresponds to a continuous-time version of the filtering prior,
compare Section 3.1.

Remark 3.5 (Estimated trajectory). Computing the piecewise continuous state tra-
jectory (3.16) is essential for the prior estimate x̄(ti−Tti

) in (3.18) to be well-defined
for all ti ∈ T . To ensure that this estimate is available at time ti ∈ T (i.e., has
already been computed in the past such that the MHE problem in (3.12) can actually
be solved at sampling time ti), the horizon length T must naturally satisfy

T > δ̄ := sup
t≥0

k(t) − t, (3.19)

where δ̄ can be referred to as the maximum deviation between a time t and its asso-
ciated sampling time k(t) ≥ t that may occur for all t ≥ 0. For equidistant sampling
using a constant sampling period δ > 0, i.e., when T = {t ∈ R≥0 : t = nδ, n ∈ I≥0},
it trivially holds that δ̄ = δ. Note that computing the full trajectory (3.16) (and
hence the third step in the algorithm below) could be avoided by designing T such
that ti − Tti

∈ T for all ti ∈ T , compare also Remark 3.7.

The MHE problem (3.12) is solved in a receding horizon fashion, and the corre-
sponding algorithm can be summarized as follows. Given the sampling time ti ∈ T
and its predecessor t−i ∈ T (if there is none, set t−i = 0),
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1. collect the input and output trajectory segments uti
and yti

,
2. solve the MHE problem (3.12) with objective (3.13),
3. update the estimated trajectory (3.16) by attaching the most recent optimal

trajectory segment x̂∗
ti

(τ), τ ∈ (t−i , ti],
4. update t−i = ti, pick the next sampling time ti = mink∈{k∈T :k>ti} k, and go

back to 1.
The stability properties of the proposed continuous-time MHE scheme are estab-
lished in the next section. In particular, we provide simple conditions for designing
a suitable set T and a horizon length T such that RGES of MHE (in the sense of
Definition 3.1) is guaranteed.

3.2.3. Robust stability analysis

In the following, we show how the i-iIOSS Lyapunov function U from Assumption 3.1
can be used to characterize a decrease of the estimation error x̂(t)−x(t) in Lyapunov
coordinates over the interval [ti −Tti

, t] for any t ≥ 0 and its corresponding sampling
time ti = k(t) (where we define x(t) := x(t, χ, u, w), t ≥ 0 for notational brevity).
Indeed, this requires invoking the specific choice of the cost function (3.13) involving
the optimal trajectories over the interval [ti − Tti

, ti] estimated at time ti. Then, we
apply this bound recursively to establish RGES of MHE in the sense of Definition 3.1,
see Theorem 3.1 below.

Proposition 3.1. Let Assumption 3.1 hold. Then, the state estimate x̂(t) in (3.16)
satisfies

U(x̂(t), x(t)) ≤ η−(ti−t)
(

4λmax(P , P )ηTtiU(x̂(ti − Tti
), x(ti − Tti

))

+ 4
∫ ti

ti−Tti

ηti−τ |w(τ)|2Qdτ
)
, (3.20)

for all t ≥ 0, χ̂, χ ∈ X , u ∈ MU , w ∈ MW , where ti = k(t) with k(t) from (3.17).

The main idea of the proof of Proposition 3.1 is similar to that of [Sch+23, Prop 1],
with technical differences due to the continuous-time setup.

Proof. Given any t ≥ 0 and its corresponding sampling time ti = k(t), let l :=
t− ti + Tti

∈ [0, Tti
] and recall that x̂(t) = x̂∗

ti
(l) = x(l, χ̂∗

ti
, uti

, ŵ∗
ti

) by (3.16). Since
x̂∗

ti
satisfies (3.7) on [0, Tti

] due to the constraints (3.12b)-(3.12e), we can invoke
the i-iIOSS Lyapunov function from Assumption 3.1. To this end, we use that
x(t) = x(t, χ, u, w) = x(l, x(t − Tti

), uti
, wti

), where wti
: [0, Tti

) → W denotes the
segment of w in the interval [ti−Tti

, ti) defined by wti
(l) := w(ti−Tti

+l), l ∈ [0, Tti
).

Then, we can evaluate the dissipation inequality (3.9b) with the trajectories x1(l) =
x̂∗

ti
(l) = x(l, χ̂∗

ti
, uti

, ŵ∗
ti

) and x2(l) = x(l, x(ti − Tti
), uti

, wti
) and the corresponding
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outputs y1(l) = ŷ∗
ti

(l) and y2(l) = yti
(l) with yti

from (3.11), which yields

U(x̂(t), x(t)) = U(x̂∗
ti

(l), x(ti − Tti
+ l))

≤ U(x̂∗
ti

(0), x(ti − Tti
))ηl +

∫ l

0
ηl−τ

(
|ŵ∗

ti
(τ) − wti

(τ)|2Q + |ŷ∗
ti

(τ) − yti
(τ)|2R

)
dτ

≤ η−(ti−t)
(
U(χ̂∗

ti
, x(ti − Tti

))ηTti

+
∫ Tti

0
ηTti −τ

(
|ŵ∗

ti
(τ) − wti

(τ)|2Q + |ŷ∗
ti

(τ) − yti
(τ)|2R

)
dτ
)
, (3.21)

where the last inequality follows by exploiting that l ≤ Tti
, the definition of l, and

the fact that x̂∗
ti

(0) = χ̂∗
ti

. Define

Ū := U(χ̂∗
ti
, x(ti − Tti

))ηTti +
∫ Tti

0
ηTti −τ

(
|ŵ∗

ti
(τ) − wti

(τ)|2Q + |ŷ∗
ti

(τ) − yti
(τ)|2R

)
dτ.

(3.22)

By Cauchy-Schwarz and Young’s inequality, we have

|ŵ∗
ti

(τ) − wti
(τ)|2Q ≤ 2|ŵ∗

ti
(τ)|2Q + 2|wti

(τ)|2Q, τ ∈ [0, Tti
). (3.23)

From a similar reasoning and the application of (3.9a), we obtain

U(χ̂∗
ti
, x(ti − Tti

)) ≤ |χ̂∗
ti

− x(ti − Tti
)|2

P

= |χ̂∗
ti

− x̄(ti − Tti
) + x̄(ti − Tti

) − x(ti − Tti
)|2

P

≤ 2|χ̂∗
ti

− x̄(ti − Tti
)|2

P
+ 2|x̄(ti − Tti

) − x(ti − Tti
)|2

P
. (3.24)

Then, Ū in (3.22) can be bounded using (3.23)-(3.24), which yields

Ū ≤ 2ηTti |x̄(ti − Tti
) − x(ti − Tti

)|2
P

+
∫ Ti

0
ηTti −τ 2|wti

(τ)|2Qdτ

+ 2ηTti |χ̂∗
ti

− x̄(ti − Tti
)|2

P
+
∫ Ti

0
ηTti −τ

(
2|ŵ∗

ti
(τ)|2Q + |ŷ∗

ti
(τ) − yti

(τ)|2R
)
dτ

= 2ηTti |x̄(ti − Tti
) − x(ti − Tti

)|2
P

+ 2
∫ Ti

0
ηTti −τ |wti

(τ)|2Qdτ + J(χ̂∗
ti
, ŵ∗

ti
, ŷ∗

ti
, ti),
(3.25)

where in the last equality we used the definition of the cost function from (3.13).
By optimality, it further follows that

J(χ̂∗
ti
, ŵ∗

ti
, ŷ∗

ti
, ti) ≤ J(x(ti − Tti

), wti
, yti

, ti)

= 2ηTti |x(ti − Tti
) − x̄(ti − Tti

)|2
P

+ 2
∫ Tti

0
ηTti −τ |wti

(τ)|2Qdτ.
(3.26)

Hence, (3.25), (3.26), and the definition of the prior estimate in (3.18) lead to

Ū ≤ 4ηTti |x̂(ti − Tti
) − x(ti − Tti

)|2
P

+ 4
∫ Ti

0
ηTti −τ |wti

(τ)|2Qdτ

= 4ηTti |x̂(ti − Tti
) − x(ti − Tti

)|2
P

+ 4
∫ ti

ti−Tti

ηti−τ |w(τ)|2Qdτ, (3.27)



52 3.2. Continuous-time Lyapunov-based MHE

where the last equality followed by a change of coordinates. In combination, from
(3.21) with (3.22) and (3.27), we obtain

U(x̂(t), x(t)) ≤ η−(ti−t)Ū

≤ η−(ti−t)
(

4ηTti |x̂(ti − Tti
) − x(ti − Tti

)|2
P

+ 4
∫ ti

ti−Tti

ηti−τ |w(τ)|2Qdτ
)
. (3.28)

Using |x̂(ti −Tti
) −x(ti −Tti

)|2
P

≤ λmax(P , P )|x̂(ti −Tti
) −x(ti −Tti

)|2P and the first
inequality in (3.9a) yields (3.20), which finishes this proof.

In the following, we consider the case where the estimation horizon T and set of
sampling times T are designed such that

4λmax(P , P )ηT −δ̄ =: ρT −δ̄ ∈ (0, 1) (3.29)

holds for some ρ ∈ (0, 1), where δ̄ is defined in (3.19). Provided that an i-iIOSS
Lyapunov function as in Assumption 3.1 is known, we point out that for any design
of T , condition (3.29) can be easily satisfied by choosing T such that

T > − ln(4λmax(P , P ))
ln(η) + δ̄, (3.30)

leading to
ρ = (4λmax(P , P ))

1
T −δ̄ η. (3.31)

Whenever (3.29) is satisfied, Proposition 3.1 directly provides a dissipation inequal-
ity in integral form with exponential decrease for the estimation error in Lyapunov
coordinates; consequently, the i-iIOSS Lyapunov function U can be viewed as a
Lyapunov-like function for MHE on each interval [k(t) − Tk(t), t] for all t ≥ 0.
In the following, we establish RGES of MHE by applying the bound (3.20) recur-
sively to cover the whole interval [0, ti] for a given sampling time ti ∈ T . However,
special care must be taken when concatenating the dissipation inequalities due to
the overlap of their domains.

Theorem 3.1. Let Assumption 3.1 hold. Suppose that the horizon length T is chosen
such that (3.29) is satisfied for some ρ ∈ (0, 1). Then, the estimation error satisfies

|x̂(ti) − x(ti)|2P ≤ 4ρti |χ̂− χ|2
P

+ 8
∫ ti

0
ρti−τ |w(τ)|2Qdτ (3.32)

for all ti ∈ T and all χ̂, χ ∈ X , u ∈ MU , and w ∈ MW , i.e., the proposed MHE
scheme is RGES in the sense of Definition 3.1.

Proof. We start by noting that condition (3.29) leads to η ≤ ρ and

4λmax(P , P )ηT = ρT −δ̄ηδ̄.

This implies the following relation:

4λmax(P , P )ηT −(k(t)−t) = ρT −δ̄ηδ̄−(k(t)−t) ≤ ρT −δ̄ρδ̄−(k(t)−t) = ρT −(k(t)−t), (3.33)
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which holds for any t ≥ 0. Assume that an arbitrary sampling time ti ∈ T is given.
We define the sequence of sampling times {kj}, j ∈ I≥0 starting at k0 = ti using the
following recursion:

kj+1 = min
k∈Kj

k (3.34)

with
Kj := {k ∈ T : kj > k ≥ kj − T}

if the set Kj is non-empty, and kj+1 = kj otherwise. In the following, we use
c := 4λmax(P , P ) for notational brevity.
Now assume that for some time s ≥ 0, kj = k(s) ≥ T is the corresponding sampling
instant. From Proposition 3.1, it follows that

U(x̂(s), x(s))

≤ η−(kj−s)
(
cηTU(x̂(kj − T ), x(kj − T ))

+ 4
∫ kj

s
ηkj−τ |w(τ)|2Qdτ + 4

∫ s

kj+1
ηkj−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ηkj−τ |w(τ)|2Qdτ

)
.

(3.35)
We aim to apply this property recursively. To this end, we have split the integral
on the right-hand side involving the interval [kj − T, kj] in three parts (noting that
kj − T ≤ kj+1 < s ≤ kj); the first part overlaps with the previous iteration covering
the interval [kj−1−T, kj−1] (unless kj−1−T ∈ T ⇒ kj = kj−1−T ), and the third part
overlaps with the succeeding iteration covering the interval [kj+1 − T, kj+1] (unless
kj − T ∈ T ⇒ kj+1 = kj − T ).
We claim that

U(x̂(k0), x(k0)) ≤ cηTρk0−kjU(x̂(kj − T ), x(kj − T ))

+ 8
∫ k0

kj+1
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ (3.36)

holds for any k0 ∈ T and all j ∈ I≥0 for which kj+1 ≥ T is satisfied, and we give a
proof by induction. For the base case, consider (3.35) with s = k0. We obtain

U(x̂(k0), x(k0)) ≤ cηTU(x̂(k0 − T ), x(k0 − T ))

+ 4
∫ k0

k1
ηk0−τ |w(τ)|2Qdτ + 4

∫ k1

k0−T
ηk0−τ |w(τ)|2Qdτ,

for which (3.36) with j = 0 serves as an upper bound.
We now prove (3.36) for general integers j ∈ I≥0. To this end, consider (3.35) with
s = kj − T . If j ∈ I≥0 is such that kj+1 ≥ T , we can use the fact that

U(x̂(kj − T ), x(kj − T ))

≤ η−(kj+1−(kj−T ))
(
cηTU(x̂(kj+1 − T ), x(kj+1 − T )) + 4

∫ kj+1

kj−T
ηkj+1−τ |w(τ)|2Qdτ

+ 4
∫ kj−T

kj+2
ηkj+1−τ |w(τ)|2Qdτ + 4

∫ kj+2

kj+1−T
ηkj+1−τ |w(τ)|2Qdτ

)
.

(3.37)
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Now assume that (3.36) is true for some integer j ∈ I≥0 for which kj+1 ≥ T . In the
following, we show that (3.36) then also holds for j + 1. The combination of (3.36)
and (3.37) yields

U(x̂(k0), x(k0)) ≤ cηT −(kj+1−(kj−T ))ρk0−kj

·
(
cηTU(x̂(kj+1 − T ), x(kj+1 − T )) + 4

∫ kj+1

kj−T
ηkj+1−τ |w(τ)|2Qdτ

+ 4
∫ kj−T

kj+2
ηkj+1−τ |w(τ)|2Qdτ + 4

∫ kj+2

kj+1−T
ηkj+1−τ |w(τ)|2Qdτ

)
+ 8

∫ k0

kj+1
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ. (3.38)

From (3.33) and (3.34), we can infer that

cηT −(kj+1−(kj−T ))ρk0−kj ≤ ρT −(kj+1−(kj−T ))ρk0−kj = ρk0−kj+1 . (3.39)

Applying (3.39) to (3.38) and using that η ≤ ρ leads to

U(x̂(k0), x(k0))
≤ ρk0−kj+1cηTU(x̂(kj+1 − T ), x(kj+1 − T ))

+ 4
∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj−T

kj+2
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+2

kj+1−T
ρk0−τ |w(τ)|2Qdτ

+ 8
∫ k0

kj+1
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ

≤ ρk0−kj+1cηTU(x̂(kj+1 − T ), x(kj+1 − T ))

+ 8
∫ k0

kj+2
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+2

kj+1−T
ρk0−τ |w(τ)|2Qdτ.

This proves (3.36) for all k0 ∈ T and all j ∈ I≥0 for which kj+1 ≥ T is satisfied. In
fact, the above argument shows that (3.36) also holds for the smallest j ∈ I≥0 for
which kj+1 < T . Furthermore, when kj+1 < T , from (3.28) it follows that

U(x̂(kj − T ), x(kj − T ))

≤ η−(kj+1−(kj−T ))
(

4ηkj+1|x̂(0) − x(0)|2
P

+ 4
∫ kj+1

kj−T
ηkj+1−τ |w(τ)|2Qdτ + 4

∫ kj−T

0
ηkj+1−τ |w(τ)|2Qdτ

)
.

The combination with (3.36) leads to

U(x̂(k0), x(k0))

≤ cηT −(kj+1−(kj−T ))ρk0−kj

(
4ηkj+1|x̂(0) − x(0)|2

P
+ 4

∫ kj+1

kj−T
ηkj+1−τ |w(τ)|2Qdτ

+ 4
∫ kj−T

0
ηkj+1−τ |w(τ)|2Qdτ

)
+ 8

∫ k0

kj+1
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ. (3.40)
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By using (3.39) and the fact that η ≤ ρ, from (3.40) it follows that
U(x̂(k0), x(k0))

≤ 4ρk0|x̂(0) − x(0)|2
P

+ 4
∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj−T

0
ρk0−τ |w(τ)|2Qdτ

+ 8
∫ k0

kj+1
ρk0−τ |w(τ)|2Qdτ + 4

∫ kj+1

kj−T
ρk0−τ |w(τ)|2Qdτ

≤ 4ρk0|x̂(0) − x(0)|2
P

+ 8
∫ k0

0
ρk0−τ |w(τ)|2Qdτ. (3.41)

Applying the lower bound in (3.9a) and recalling that ti = k0 yields (3.32), which
finishes this proof.

Some remarks are in order.

Remark 3.6 (Horizon length and prior weighting). Another interpretation of the
condition in (3.29) on the horizon length for guaranteed RGES of MHE is that this
ensures that the prior weighting (specifically, the term ηT Γ(χ, x̄) in (3.13)) is not too
large compared to the integral over the stage costs. This is a natural requirement in
MHE to ensure that the estimation scheme can keep up with the data and does not
only follow a (potentially unstable) system trajectory, compare also [Rao00, Example
4.6.1].

Remark 3.7 (Sampling strategy). If the set T is such that ti −Tti
∈ T for all ti ∈ T

(which is the case, e.g., for equidistant sampling with a constant period δ > 0 and
T being an integer multiple of δ, compare Remark 3.5), it follows that the interval
boundaries of each time horizon considered in the MHE optimization problem (3.12)
coincide exactly with two sampling times. Consequently, it suffices to evaluate (3.20)
only at sampling times t = ti ∈ T —yielding a more direct Lyapunov-like function
for MHE—and simply apply this bound recursively to establish RGES as is the case
in discrete-time settings (e.g., [Sch+23, Cor. 1]), in particular without the need to
take into account any discrepancy between horizon boundaries and sampling times.
These simplifications result in a slightly weaker condition on the horizon length and
a slightly improved RGES result; namely, we can take δ̄ = 0 in (3.29) and replace
the factor 8 in (3.32) by the factor 4.

Remark 3.8 (Full information estimation). The restriction to an exponential de-
tectability property (Assumption 3.1) can be relaxed to asymptotic detectability (in
the sense of Definition 2.3) if FIE is applied, that is, the MHE scheme in (3.12)
and (3.13) with Tti

= ti. In this case, we consider the cost function (3.13) with Tti

replaced by ti, Γ(χ, x̄) = α2(2|χ − x̄|) and L(w,∆y) = σw(2|w|) + σy(|∆y|), where
α2, σw, σy ∈ K∞ (and α1 ∈ K∞ appearing below) correspond to the i-iIOSS Lyapunov
function parameters from Definition 2.3. By applying the same steps as in the proof
of Proposition 3.1, we can infer that the corresponding estimation error satisfies

α1(|x̂(ti) − x(ti)|) ≤ 2ηtiα2(2|χ̂− χ|) + 2
∫ ti

0
ηti−τσw(2|w(τ)|)dτ

for all ti ∈ T and all χ̂, χ ∈ X , u ∈ MU , and w ∈ MW , which implies that FIE is
RGAS in the sense of Definition 3.1.
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3.3. Discussion

The MHE framework for continuous-time systems proposed and analyzed in Sec-
tion 3.2 builds on our ideas for the discrete-time case from [Sch+23, Sec. III]. How-
ever, we want to emphasize that the results do not trivially follow from this. Instead,
Theorem 3.1 is an interesting (and more general) theoretical result on its own re-
quiring a different proof technique, and moreover, offers significant advantages over
purely discrete-time schemes, especially when the physical system to be estimated
actually corresponds to a continuous-time one (which is often the case in practice).
Specifically, the continuous-time MHE scheme from Section 3.2 allows for arbitrary
sampling strategies to define the set T , i.e., the sampling instants at which the
underlying optimization problem (3.12) is actually solved, which provides a huge
additional degree of freedom compared to [Sch+23, Sec. III]. Since the set T can be
modified online, the proposed MHE scheme can even be used in an event-triggered
fashion, that is, by choosing the sampling instants during operation, depending on
a suitable triggering rule. Consequently, the continuous-time MHE scheme pre-
sented in Section 3.2 can be better tailored to the problem at hand, which can yield
more accurate results with less computational effort compared to standard equidis-
tant sampling. Furthermore, the consideration of a continuous-time system model
simplifies the detectability analysis (i.e., the verification of certain LMIs, compare
Chapter 7), which is structurally easier and particularly does not require specify-
ing a certain discretization scheme and a sampling period beforehand. Moreover,
assuming that the numerical solution of the continuous-time MHE problem (3.12)
is sufficiently accurate (compare the discussion below Remark 3.4), the robustness
guarantees provided by Theorem 3.1 are valid for MHE applied to the real physical
continuous-time system, and not to an approximately discretized model (which may
suffer from additional discretization errors).
In the following, we focus on the role of the discounting in (3.13), which creates a
direct link between detectability, MHE, and robust stability (compare Remark 3.3).
Since this conceptually originates from our work [Sch+23, Sec. III] (for discrete-
time systems), it is appropriate to discuss it in a more holistic context covering both
discrete- and continuous-time MHE approaches and their historical development.

MHE: A trade-off between practical designs and theoretical guarantees

Designing MHE schemes for nonlinear systems generally requires balancing practical
designs against valid theoretical guarantees. For example, one may choose a very
simple scheme involving a zero prior weighting and standard quadratic penalties,
that is, the cost function in (3.13) with η = 1 and P = 0, compare [MM95]. However,
since past data is completely neglected in the design, the system must in general be
observable to ensure stability of MHE, and furthermore, large estimation horizons
may be required to obtain a performance comparable to FIE, compare [RMD20,
Sec. 4.3.1] and see also Chapter 6 (where we analyze the performance of MHE with
and without a prior weighting in more detail). Therefore, a non-zero prior weighting
seems appropriate, which, on the other hand, requires a certain dependency on the
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unknown FIE cost [RRM03] or knowledge of specific parameters of the observability
property [ABB08; AA16] to ensure stable estimation, both of which are generally
difficult (or even impossible) to verify for general nonlinear systems.
Establishing MHE for general detectable nonlinear systems that follow a practi-
cal design, provide good theoretical guarantees, and require conditions that can be
easily verified has also emerged as a major problem in the more recent literature,
compare, for example, [Mül17; Hu17; AR19b; KM18]. In particular, robust sta-
bility of MHE could be established in [Mül17; AR19b] based on i-IOSS using a
general cost function that permits standard quadratic penalties, however, the ro-
bustness bounds deteriorate with an increasing estimation horizon. Such a behavior
is counter-intuitive and undesired since one would naturally expect better estima-
tion results if more information is taken into account. This issue could be avoided
using a modified cost: either by adding a max-term that penalizes the largest sin-
gle disturbance as in [Mül17; Hu17], or by using a specific cost structure satisfying
the triangle inequality [KM18]. Hence, a trade-off between a standard quadratic
cost function and good performance guarantees for MHE has arisen. This could
be resolved in the Lyapunov-based MHE frameworks from Section 3.2 (in continu-
ous time) and [Sch+23, Sec. III] (in discrete time), which allow choosing standard
quadratic penalties (with additional time-discounting) while providing theoretical
guarantees that improve as the horizon length increases. We point out that com-
parable results were achieved earlier by using more general time-discounting with
KL-functions [KM23], or without discounting using a Lyapunov-like function [AR21;
All20]. In the following, we compare these three structurally different approaches
and highlight the benefits of Lyapunov-based MHE.

MHE using general time-discounting [KM23]

The requirements of Theorem 3.1 (and [Sch+23, Thm 1]) for guaranteed robust sta-
bility of MHE are fundamentally the same as in [KM23], namely, that the detectabil-
ity property of the system (given by i-IOSS) must be suitably related to the cost
function used for MHE by employing additional time-discounting. Consequently,
the robustness bounds established in Theorem 3.1 and [Sch+23, Thm. 1, Cor. 1]
are qualitatively comparable to those from [KM23, Thm. 14] for the special case of
exponential stability. However, we point out that under certain conditions, [KM23,
Thm. 14] also implies an asymptotic stability result using a nonlinear contraction.
In contrast, in Section 3.2 (and [Sch+23, Sec. III]), exponential detectability (i.e.,
a quadratically bounded i-iIOSS Lyapunov function, compare Assumption 3.1) is
crucially required to achieve a linear contraction over the estimation horizon, which
is in line with most of the recent results on nonlinear MHE [Hu24; AR19b; Hu17;
Mül17; KM18], compare also [AR19b, Prop. 1] and [Hu24, Lem. 1].
Whereas [KM23; KM18; Hu24; AR19b; Hu17; Mül17; Ale25] build their analysis
on properties of certain K- and KL-functions, we employ corresponding Lyapunov
function characterizations in Section 3.2 and [Sch+23, Sec. III]. This fundamental
difference enables further theoretical insights and practical improvements. First,
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verifying the required detectability condition in order to guarantee RGES of MHE
becomes rather straightforward, particularly because we provide simple LMI con-
ditions for computing i-IOSS and i-iIOSS Lyapunov functions in Chapter 7. Even
though these results directly imply traditional KL-characterizations of i-IOSS and
i-iIOSS as mentioned in Remark 7.4 below, we obtain a stronger and more di-
rect relation between the i-(i)IOSS Lyapunov function and the corresponding MHE
cost function (which simplifies its tuning, compare Remark 3.4), as the additional
(and possibly conservative) step of calculating the respective KL-functions can be
avoided. Furthermore, arguing in Lyapunov coordinates generally allows for less re-
strictive conditions on the horizon length for guaranteed RGES of MHE compared
to, e.g., [KM23, Thm. 14], which can be seen in Table 3.1 and the discussion below.
An additional useful feature is that even in the case of merely asymptotic (instead
of exponential) detectability, we can still use an exponential decrease in the dissipa-
tion inequality without loss of generality (consider the i-iIOSS Lyapunov function
from Definition 2.3 together with Proposition 2.3). This enables a much simpler and
more intuitive tuning of the FIE cost function compared to, e.g., [KM23, Ass. 1] and
[Hu24, Ass. 3] using general KL-function inequalities, see also [Sch+23, Sec. III-C]
and Remark 3.8.

A Lyapunov-like function framework for MHE [AR21; All20]

We point out that a Lyapunov approach to stability of FIE already appeared in the
literature; in particular, a Lyapunov-like function (termed a Q-function) was used
in [AR19a] to establish nominal stability of FIE, and the results were extended in
[AR21] and [All20, Ch. 5] to RGES and RGAS of FIE5, respectively. However, the
proposed Q-function significantly differs from the Lyapunov function employed in
Section 3.2 and [Sch+23, Sec. III], especially in its non-trivial structure utilizing
two time arguments. The key ingredient in [AR21], [All20, Ch. 5] is a sequence of
augmented infinite-horizon problems, each considering the first t disturbances and
zero disturbances thereafter. As a result, each of these infinite-horizon problems has
finite disturbance sequences and therefore well-defined solutions. Then, at any time
t ∈ I≥0, the respective infinite-horizon cost function is compared to the truncated
finite-horizon cost function considering the partial time interval I[0,j−1] for some
j ∈ I[0,t]. This procedure allows establishing one-step dissipation in j for each
j ∈ I[0,t]. However, since the resulting function is only semidefinite, it needs to be
combined with the i-IOSS Lyapunov function to finally create the desired Q-function.
Taking into account its different components, (“pessimistic”6) Lyapunov-like bounds
on the Q-function are established in [AR21, Prop. 3.14] for exponential, and in
[All20, Sec. 5.3] for asymptotic stability. In this context, note that the lower bound
of the Q-function is given by the lower bound of the i-IOSS Lyapunov function; the

5Note that RGES of MHE was shown in [AR21, Thm. 4.2] assuming that the underlying FIE
is RGES and provides a linear contraction over the estimation horizon, i.e., without explicitly
constructing a Q-function for MHE, compare [All20, Sec. 5.5.3] and [KM23, Sec. 4].

6Wording according to the discussion below [AR21, Cor. 3.18]; it is not distinguished between
the influences of long past or recent disturbances.
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upper bound, however, requires an additional stabilizability assumption of certain
structure, compare [AR21, Ass. 3.6] and [All20, Ass. 5.14].
The Lyapunov-based analysis in Section 3.2 (and [Sch+23, Sec. III]), on the other
hand, is much simpler in many respects, enabled by an additional discount factor
in the cost function. Note that this corresponds to a fading memory design, a con-
cept that has been widely used in the literature for decades in many research areas
(see, e.g., [BC85; MS00]), and which was previously exploited also in the context of
state estimation, e.g., to deal with model errors in Kalman filter applications [SS71].
Within our Lyapunov-based framework, this results in a strong connection between
detectability and the MHE cost such that the i-IOSS Lyapunov function directly
serves as a Lyapunov function for MHE, see Proposition 3.1. As a result, many
(potentially conservative) steps, excessive over-approximations, and additional con-
ditions such as stabilizability could be avoided in the analysis. Interestingly, the
conditions on the cost function in terms of compatibility with i-IOSS are fundamen-
tally similar for all the results considered above (except for the time-discounting),
see Remark 3.4, [Sch+23, Rem. 1], [AR21, Ass. 3.5], [All20, Ass. 5.13], and [KM23,
Ass. 1].

Lyapunov-based MHE allows for shorter horizons

In the following, we compare the discrete-time methods discussed above by means
of their respective conditions on the horizon length for guaranteed RGES of MHE,
which illustrates the general benefit of arguing in Lyapunov coordinates (we re-
strict ourselves to the discrete-time case here, as there are no MHE approaches
for continuous-time systems in the literature that are comparable with the results
from Section 3.2). For a broader overview, we also consider [AR19b, Thm. 1],
i.e., MHE based on a KL-function characterization of i-IOSS, but without a time-
discounted objective function as in [KM23]. For a fair comparison, we choose the
cost functions for [AR21; KM23; AR19b] such that the smallest possible horizon
follows in each case: we consider b(s, t) = β(2s, t) according to [KM23, Rem. 6] and
Vp(χ, x̄) = |χ− x̄|2 in [AR19b, Ass. 3]. Since the analysis is much more involved for
[AR21], we consider only an ideal (strict) lower bound on the minimal horizon length
which follows from a vanishing prior weighting (cx = cx → 0 in [AR21, Ass. 3.4])
and under a perfect stabilizability condition (cc → 0 in [AR21, Ass. 3.6]).
Provided that a quadratically bounded i-IOSS Lyapunov function7 is given, Table 3.1
shows for each case the resulting constants C > 0 and µ ∈ (0, 1) defining the con-
traction condition CµN < 1 that the horizon length N must satisfy for guaranteed
RGES of MHE. Solving the conditions for the minimal stabilizing horizon length
by Nmin = ⌈− lnC/ lnµ⌉ and applying standard properties of the logarithmic func-
tion, we arrive at the following conclusions. First, under optimal choices of the cost
functions in terms of the horizon length, the contraction conditions from [KM23,
Thm. 14] and [AR19b, Thm. 1] are (except for the additional factor 3) very similar

7See Definition 7.1 in Chapter 7 and compare Assumption 3.1.
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Table 3.1. Requirement for the horizon length N for different results from the literature.

Result C µ

[Sch+23, Thm. 1] 4λmax(P , P ) η

[AR21, Thm. 4.2] >

√
4λmax(P )

λmin(P ) > 4

√
1 − (1 − η) λmin(P )

4λmax(P )

[KM23, Thm. 14] 8λmax(P )
λmin(P ) η

[AR19b, Thm. 1] 3
√

8λmax(P )
λmin(P )

√
η

Depicted are the respective constants C, µ > 0, which form the contraction condition CµN < 1
that the horizon length N must satisfy for guaranteed RGES of MHE.

to each other, despite a structurally different MHE design and proof technique8.
Second, we can generally conclude that [Sch+23, Thm. 1] provides the least conser-
vative estimate on the minimal horizon length Nmin for guaranteed RGES of MHE;
to see this, recall that λmax(P )/λmin(P ) ≥ λmax(P , P ) for all P ⪰ P ≻ 0 and observe
that each constant C, µ in Table 3.1 has its minimal value at λmax(P )/λmin(P ) = 1.
This general fact is also observed in the numerical example in Section 3.4 below,
where we compute the minimal stabilizing horizon length for each case (compare
Table 3.2). As a side remark, we note that a direct consequence of the choices made
in the proof of [AR21, Prop. 3.15] is that generally no better contraction rate than
µ = 4

√
3/4 ≈ 0.93 and hence no smaller horizon length than N = 10 can be obtained

using [AR21, Thm. 4.2], even in case of η → 0 in (7.2b) (which corresponds to triv-
ial observability, e.g., in case of full state measurements) and under the ideal setup
considered above.
Overall, the Lyapunov-based MHE schemes from Section 3.2 and [Sch+23, Sec. III]
employ a practical (fading memory) least squares cost function and provide theoreti-
cal stability and robustness guarantees that improve as the horizon length increases.
This becomes especially powerful when combining it with our results from Chapter 7
below, where we provide simple LMI conditions to compute quadratically bounded
i-IOSS and i-iIOSS Lyapunov functions (for discrete- and continuous-time systems,
respectively) so that an MHE design with guaranteed robust exponential stability is
directly obtained. The simulation examples in the next section show that this partic-
ular combination enables guaranteed robust stability of Lyapunov-based MHE under
practical conditions, in particular requiring significantly shorter horizons compared
to results from the literature.

8For both [KM23, Thm. 14] and [AR19b, Thm. 1], note that the factor 8 in the second column
of Table 3.1 could be easily replaced by 4 by a straightforward extension of the respective
derivation. The additional factor 3 appearing in the last row results from a max-based i-IOSS
bound used in [AR19b, Thm. 1] (whereas [KM23, Thm. 14] allows for using a less-restrictive
sum-based i-IOSS bound) and could also be avoided by a suitable modification. Nevertheless,
the above conclusions also apply to these improved conditions in the practical case where
λmax(P )/λmin(P ) > λmax(P , P ), compare also the simulation example in Section 3.4.
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3.4. Numerical examples

We consider two examples from the literature: a chemical reactor process in Sec-
tion 3.4.1 and a realistic 12-state quadrotor model with flexible rotor blades in Sec-
tion 3.4.2. As first step, we apply the verification methods proposed in Sections 7.1.1
and 7.1.2 below to verify i-IOSS and i-iIOSS for the corresponding discrete- and
continuous-time models, respectively. Here, it is also worth noting that the lack of
such methods in the literature was generally considered a major problem in [AR21],
as i-IOSS became a standard detectability assumption in the recent literature on
nonlinear MHE, compare Section 3.3. Theorems 7.1 and 7.2 provide useful tools to
actually verify this crucial property in practice. Based on these results, we apply
the Lyapunov-based MHE schemes from [Sch+23, Sec. III] and Section 3.2. Overall,
the following examples demonstrate the practicability of Lyapunov-based MHE and
the verification methods presented in Sections 7.1.1 and 7.1.2, thus illustrating the
ability of MHE to provide valid theoretical guarantees under practical conditions.
The simulations are performed in MATLAB using CasADi [And+18] and the NLP
solver IPOPT [WB05]. LMIs are verified using YALMIP [Löf04; Löf09] and the
semidefinite programming solver MOSEK [MOS24].

3.4.1. Chemical reaction

We consider the reversible chemical reaction 2A ⇌ B taking place in a constant
volume batch reactor, which is taken from [TR02, Sec. 5]. The system state x
consists of the partial pressures of A and B and evolves according to

ẋ1 = −2k1x
2
1 + 2k2x2,

ẋ2 = k1x
2
1 − k2x2

(3.42)

with k1 = 0.16 and k2 = 0.0064. An initial quantity of A and B is fed into the
reactor, but the exact composition is unknown. A pressure gauge measures the
total pressure prevailing in the reactor, yielding the output equation y = x1 + x2.
The true initial state of the system and its a priori estimate are

x(0) = χ =
[
3
1

]
, χ̂ =

[
0.1
4.5

]
. (3.43)

This setup poses a challenge for state estimation; in fact, simple estimators such
as the standard EKF can fail to provide meaningful results, compare [RMD20, Ex-
ample 4.38] and see the simulation results in Figure 3.1 below. This example is
frequently used in the MHE literature (see, e.g., [RMD20, Example 4.38]), however,
i-IOSS has never been certified. In the following, we apply the methods proposed in
Sections 7.1.1 and 7.1.2 to verify this crucial property for both the discretized and
the original continuous-time model and apply the Lyapunov-based MHE schemes
from [Sch+23, Sec. III] and Section 3.2.
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Table 3.2. Minimum required horizon length for guaranteed RGES of MHE compared to
the different methods from the literature considered in Table 3.1.

[Sch+23, Thm./Cor. 1] [AR21, Thm. 4.2] [KM23, Thm. 14] [AR19b, Thm. 1]
15 > 8 · 106 119 142

Discrete-time Lyapunov-based MHE framework

To obtain a discrete-time model of the system (3.42), we apply an Euler discretiza-
tion using the sampling time t∆ = 0.1, leading to

x+
1 = x1 + t∆(−2k1x

2
1 + 2k2x2) + w1,

x+
2 = x2 + t∆(k1x

2
1 − k2x2) + w2,

y = x1 + x2 + w3,

where we consider additional disturbances w ∈ R3. In the following, we treat w as a
uniformly distributed random variable satisfying |wi| ≤ 10−3, i = 1, 2 for the process
disturbances and |w3| ≤ 0.1 for the measurement noise. We assume that the prior
knowledge X = [0.1, 4.5] × [0.1, 4.5] is available, which follows from the physical
nature of the system under the above conditions (in particular, the initial condi-
tions (3.43) and boundedness of the disturbance w), compare also the simulation
results in Figure 3.1 below.
For the considered system, we can apply Corollary 7.1 in combination with SOS
optimization to compute a quadratic Lyapunov function U(x, x̃) = |x − x̃|2P in the
sense of Definition 7.1 with

P =
[
4.539 4.171
4.171 3.834

]
, Q =

103 0 0
0 104 0
0 0 103

 , R = 103,

and the decay rate η = 0.91. We point out that, to the best of the authors’ knowl-
edge, this is the first time that i-IOSS has been explicitly verified for this example.
Based on the i-IOSS Lyapunov function above, we can now compute the minimum
horizon length Nmin sufficient for robust stability of MHE according to [Sch+23,
Sec. III], and compare it to corresponding estimates from the recent nonlinear MHE
literature, i.e., the Lyapunov-like function framework [AR21], MHE with general
time-discounting [KM23], and without time-discounting [AR19b], by resolving the
respective conditions in Table 3.1. As can be seen from Table 3.2, the Lyapunov-
based MHE approach from [Sch+23, Sec. III] yields a minimum horizon length that
is (at least) one order of magnitude better (i.e., smaller) than those obtained from
the literature.
For the following simulation, we choose N = 30 > Nmin to provide a small estimation
error bound. The simulation results are depicted in Figure 3.1, which shows robustly
stable estimation as guaranteed by [Sch+23, Thm. 1]. In order to compare the
results, we also simulated the EKF. As can be seen in Figure 3.1, however, the
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Figure 3.1. Comparison of MHE results (blue), EKF estimates (magenta), real system
states (red) and measurements (green circles) for the discretized chemical reaction, where
x1, x̂1 are solid and x2, x̂2 are dash-dotted. We have used N = 30, which guarantees RGES
of MHE by [Sch+23, Thm. 1].

corresponding estimates exhibit a serious error compared to MHE, which is partly
due to the fact that the physical constraints were not met. In summary, the overall
simulation results are similar to [TR02, Sec. 5], [RMD20, Example 4.38], but with
valid robustness guarantees for MHE.

Continuous-time Lyapunov-based MHE framework

We consider the system (3.42) with initial condition (3.43) under additional distur-
bances w ∈ R3, which yields

ẋ1 = −2k1x
2
1 + 2k2x2 + w1

ẋ2 = k1x
2
1 − k2x2 + w2

y = x1 + x2 + w3.

(3.44)

We consider the disturbance signal w to be piece-wise constant over intervals of
length t∆ = 0.01 and satisfies w(t) ∈ W = {w ∈ R3 : |wi| ≤ 0.1, i = 1, 2, 3} for all
t ≥ 0, see left plot in Figure 3.2. Here, we consider the simulation length tsim = 5
and additionally assume that the true trajectory x satisfies x(t) ∈ X = {x ∈ R2 :
0.1 ≤ xi ≤ 5, i = 1, 2} for all 0 ≤ t ≤ tsim, which is reasonable under this setup.
We verify the LMI conditions (7.33) on9 X ×W , and by application of Theorem 7.2,

9Here, we exploit that condition (7.33) is linear in x; for a fixed value of η = 0.4 and κ = − ln η,
solving (7.33) for the vertices of X implies that (7.33) holds for all X × W by convexity of X .
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Figure 3.2. Disturbance signal w (left) and sampling times ti contained in the set T (right)
for the continuous-time MHE scheme applied to the chemical reaction.

the quadratic i-iIOSS Lyapunov function U(x1, x2) = |x1 − x2|2P with

P =
[
4.009 3.768
3.768 3.549

]

satisfies Assumption 3.1 on X × W with η = 0.4, Q = diag(103, 103, 102), and
R = 102.
We use the MHE objective (3.13) with Γ(χ, x̄) = 2|χ− x̄|2P and L(w,∆y) = 2|w|2Q +
|∆y|2R and want to perform 50 MHE updates during the simulation (in the interval
[0, tsim]). To illustrate the flexibility of the MHE scheme from Section 3.2 allowing for
non-equidistant sampling (in particular, in contrast to the discrete-time framework
applied in the previous section), we design the set T such that it contains more
samples towards the beginning of the experiment, as can be seen by the blue dots
in the right plot in Figure 3.2. This yields δ̄ = 0.19 in (3.19). Choosing the horizon
length T = 2 satisfies (3.29) and guarantees the convergence rate ρ = 0.86 in (3.32).
We solve each MHE problem (3.12), where we employ a multiple shooting approach
and integrate the system dynamics in (3.44) using the classic Runge-Kutta method
(RK4) with step size t∆ = 0.01. The computations took at most τmax = 19.6 ms
per iterate of the MHE algorithm presented at the end of Section 3.2.2 for all sam-
pling times ti ∈ T . The estimation results are depicted in Figure 3.3. This shows
fast convergence of the estimation error to a neighborhood around the origin, as
guaranteed by Theorem 3.1.

3.4.2. Quadrotor

We adapt the example from [Kai+17] and consider a quadrotor model involving
four rotors with flexible blades. Let I denote the stationary inertial system with
its vertical component pointing into the Earth, where position and velocity of the
quadrotor are represented by z = [z1, z2, z3]⊤ and s = [s1, s2, s3]⊤, respectively.
By B we denote the body-fixed frame attached to the quadrotor, with the third
component pointing in the opposite direction of thrust generation. The attitude of B
with respect to I is captured by a rotation matrix R (where we use zyx-convention),
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Figure 3.3. Estimation results of the continuous-time Lyapunov-based MHE scheme ap-
plied to the chemical reaction. Top: comparison of the estimated trajectory x̂ (3.16), the
true system trajectory x, and the measurements y; bottom: the corresponding estimation
error. The circles correspond to the estimates x̂(ti) at the sampling times ti ∈ T .

which involves the roll, pitch, and yaw angle of the quadrotor represented by ξ =
[ϕ, θ, ψ]⊤. The angular velocity of the quadrotor in B with respect to I is given by
Ω = [Ω1,Ω2,Ω3]⊤. Assuming a wind-free environment, the overall dynamics can be
described as

ż = s,

ξ̇ = Γ(ξ)Ω,
mṡ = mge3 − TR(ξ)e3 −R(ξ)BΩ,
JΩ̇ = −Ω×JΩ + τ −DΩ,

(3.45)
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where e3 = [0, 0, 1]⊤ and (·)× refers to the skew symmetric matrix associated with
the cross product such that u×v = u × v for any u, v ∈ R3. The thrust T ∈ R
and the torque τ ∈ R3 are generated by the four rotors by means of their angular
velocities ωi via [

T
τ

]
=


cT cT cT cT

0 −lcT 0 lcT

lcT 0 −lcT 0
−cQ cQ −cQ cQ



ω2

1
ω2

2
ω2

3
ω2

4

 ,
and the matrix Γ is defined as

Γ(ξ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 .
For further details on the model and its derivation, we refer the interested reader
to [Kai+17; NS19]. The parameters are chosen as m = 1.9, J = diag(5.9, 5.9, 10.7) ·
10−3, g = 9.8, l = 0.25, cT = 10−5, cQ = 10−6, B = 1.14 · e×

3 , and D = 0.0297 · e3e
⊤
3 .

In summary, the overall model has the states x = [z⊤, ξ⊤, s⊤,Ω⊤]⊤ ∈ R12 and the
inputs u = [ω1, ω2, ω3, ω4]⊤ ∈ R4. We additionally assume that the dynamics of ẋi is
corrupted by an additive disturbance di, i ∈ I[1,12], and that only noisy position and
orientation measurements y = [z⊤, ξ⊤]⊤ + v with noise v ∈ R6 are available. In the
following, we consider d, v uniformly distributed such that |di| ≤ 10−3, i = I[1,12], and
|vi| ≤ 0.1, i = I[1,6] and define w = [d⊤, v⊤]⊤ ∈ R18. The discrete-time model (3.1)
is then obtained via Euler-discretization using the sampling time t∆ = 0.05.
We assume that some input-output sequences {u(t)} and {y(t)} have been measured
while performing a certain control scenario of the quadrotor that ensures x(t) ∈ X =
{x : |ξi| ≤ π/6, |Ωi| ≤ 1, i ∈ I[1,3]} and u(t) ∈ U = {u : |ui| ≤ 1500, i ∈ I[1,4]} for
all t ∈ I≥0; the objective is to reconstruct the corresponding state trajectory using
Lyapunov-based MHE. To this end, we verify condition (7.26) on X × U by suitably
gridding the state space and thus compute a quadratic i-IOSS Lyapunov function
with the decay rate η = 0.87. Choosing the horizon length M = 30 satisfies the
conditions [Sch+23, Thm./Cor. 1] such that RGES of MHE is guaranteed.
Figure 3.4 shows the real, measured, and estimated position of the quadrotor (in the
frame I) to illustrate the maneuver flown. The overall estimation error in Lyapunov
coordinates is depicted in Figure 3.5 and illustrates exponential convergence to a
neighborhood around the origin, as guaranteed by [Sch+23, Thm./Cor. 1].
We conclude this section by noting that similar results follow from the application of
the continuous-time MHE framework from Section 3.2 (in particular, Theorem 3.1)
and the i-iIOSS verification from Section 7.1.2 to the original continuous-time model
in (3.45), although we omit a detailed discussion here for reasons of space and
redundancy.
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Figure 3.4. Comparison of the estimated (blue), true (red), and measured (green) position
of the quadrotor.

Figure 3.5. Estimation error in Lyapunov coordinates of MHE applied to the discretized
quadrotor model.
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3.5. Summary

In this chapter, we focused on robust stability guarantees of MHE for detectable non-
linear systems under process disturbances and measurement noise. We discussed a
basic MHE scheme in discrete time and discussed the general structure of the un-
derlying optimization problem. We briefly introduced the Lyapunov-based MHE
scheme from [Sch+23, Sec. III], which employs a least squares objective under addi-
tional discounting and enjoys many beneficial theoretical properties, provided that
the cost function is selected in accordance with a known i-IOSS Lyapunov function
characterizing the detectability property of the system.
In the second part, we presented a counterpart for continuous-time systems—namely,
a Lyapunov-based MHE scheme for general nonlinear perturbed continuous-time sys-
tems. Assuming that the system is detectable (i-iIOSS) and admits a corresponding
i-iIOSS Lyapunov function, we showed that there exists a sufficiently long estima-
tion horizon that guarantees robust global exponential stability of the estimation
error in a time-discounted L2-to-L∞ sense. While the overall robust stability anal-
ysis is based on similar ideas as in the discrete-time setting in [Sch+23, Sec. III],
the continuous-time MHE framework offers some significant advantages in practice.
In particular, the sampling times at which the underlying optimization problem is
solved can be chosen arbitrarily, which even allows the MHE scheme to be applied
in an event-triggered fashion using a suitable triggering rule. Consequently, the pro-
posed MHE scheme can be tailored to the problem at hand, which can yield more
accurate results with less computational effort compared to standard equidistant
sampling.
We discussed Lyapunov-based MHE (for both discrete- and continuous-time sys-
tems) in the context of recent results from the literature, highlighting its advan-
tageous properties arising from the fact that we argue entirely in Lyapunov coor-
dinates. First, tuning the MHE cost function by suitably relating it to i-(i)IOSS
in order to achieve valid theoretical guarantees (which typically requires general
KL-function inequalities in the literature) becomes easy and intuitive, which even
applies for the case of FIE and under merely asymptotic (rather than exponential)
detectability. Second, a Lyapunov-based analysis generally allows for significantly
less conservative (i.e., smaller) estimates of the minimum required horizon length
compared to the literature.
The applicability of Lyapunov-based MHE for discrete- and continuous-time sys-
tems was illustrated using a nonlinear chemical reaction and a quadrotor model
from the literature. Here, we verified the required detectability condition by com-
puting i-IOSS and i-iIOSS Lyapunov functions using our methods from Sections 7.1.1
and 7.1.2 and successfully applied the Lyapunov-based MHE schemes from [Sch+23,
Sec. III] and Section 3.2. For the latter, we used a non-equidistant sampling method,
which illustrates the greater degree of flexibility compared to purely discrete-time
approaches. Overall, the combination of Lyapunov-based MHE and the verification
methods from Sections 7.1.1 and 7.1.2 allow for guaranteed robustly stable state es-
timation under practical conditions, for both discrete- and continuous-time systems.



4. Suboptimality guarantees for
real-time applications

In this chapter, we present several suboptimal MHE schemes for general nonlinear
discrete-time systems and provide robustness guarantees with respect to process
disturbances and measurement noise that particularly do not require optimality of
the solutions. This is crucial in order to ensure the practicability of MHE methods,
especially in real-time applications. To this end, we employ an a priori known,
robustly stable auxiliary observer, from which the robust stability properties can
be inherited. In Section 4.1, we specify our setup concerning the system and the
auxiliary observer. Then, in Section 4.2, we consider a classical MHE formulation
that optimizes over system trajectories and allows the user to choose a standard
least squares cost function, as is typical in practical applications. In Section 4.3, we
propose a modified MHE formulation where we directly optimize over trajectories
of the auxiliary observer, yielding an estimation scheme that is easier to implement,
provides improved theoretical guarantees, and can even outperform comparable fast
MHE approaches that optimize over system trajectories.
Disclosure: The following chapter is based upon and in parts literally taken from
our previous publications [SM23d; SWM23; SKM21]. A detailed description of the
contributions of each author is given in Appendix A.

4.1. System description and auxiliary observer

We consider the discrete-time, perturbed nonlinear system

x(t+ 1) = f(x(t), u(t), d(t)), x(0) = χ, (4.1a)
y(t) = h(x(t), u(t), v(t)), (4.1b)

where t ∈ I≥0 is the discrete time, x(t) ∈ Rn is the system state at time t, χ ∈ Rn

is the initial condition, u(t) ∈ Rm is the (known) control input, d(t) ∈ Rq is the
(unknown) process disturbance, v(t) ∈ Rr is the (unknown) measurement noise,
and y(t) ∈ Rp is the noisy output measurement. The nonlinear continuous functions
f : Rn ×Rm ×Rq → Rn and h : Rn ×Rm ×Rr → Rp represent the system dynamics
and output equation, respectively. We denote the nominal (disturbance-free) system
equations as fn(x, u) = f(x, u, 0) and hn(x, u) = h(x, u, 0).
Note that in this chapter, the system description (4.1) explicitly distinguishes be-
tween process disturbances d (which affect the evolution of the system) and mea-
surement noise v (which affects the output) and hence refrains from employing a
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generalized noise input w = (d, v), which is necessary because they require a different
treatment here.
In the following, we assume that the unknown true system trajectory satisfies

(x(t), u(t), d(t), v(t)) ∈ X × U × D × V =: Z, t ∈ I≥0, (4.2)

where Z is forward invariant in the sense that

(x, u, d, v) ∈ Z ⇒ f(x, u, d) ∈ X , h(x, u, v) ∈ Y . (4.3)

In (4.3), X ⊆ Rn, U ⊆ Rm, D ⊆ Rq, V ⊆ Rr, Y ⊆ Rp are some known closed
sets, where we assume that 0 ∈ D and 0 ∈ V . Such constraints typically arise from
the physical nature of the system, e.g., non-negativity of partial pressures, mechan-
ically imposed limits, or parameter ranges. Using this information can significantly
improve the estimation results, compare Section 3.1. If no such sets are known a
priori, they can simply be chosen as X = Rn, U = Rm, D = Rq, V = Rr, Y = Rp.
In the following, we require a Lipschitz continuity property of h.

Assumption 4.1 (Lipschitz continuity of h). The function h in (4.1b) is Lipschitz
continuous, i.e., there exists a constant Lh > 0 such that

|h(x1, u, v1) − h(x2, u, v2)| ≤ Lh(|x1 − x2| + |v1 − v2|)

for all x1, x2 ∈ X and v1, v2 ∈ V uniformly for all u ∈ U .

Given some initial guess χ̂ of the true state χ, the overall goal is, at any time
t ∈ I≥0, to provide an estimate x̂(t) of the current state x(t) that satisfies the
following stability notion.

Definition 4.1 (RGES). A state estimator for system (4.1) is robustly globally ex-
ponentially stable (RGES) if there exist C1, C2, C3 > 0 and ρ ∈ (0, 1) such that the
resulting state estimate x̂(t) with x̂(0) = χ̂ satisfies

|x̂(t) − x(t)| ≤ max
{
C1ρ

t|χ̂− χ|, max
j∈I[0,t−1]

C2ρ
t−j−1|d(j)|, max

j∈I[0,t−1]
C3ρ

t−j−1|v(j)|
}

(4.4)
for all t ∈ I≥0, all initial conditions χ̂, χ ∈ X , and all disturbance and noise se-
quences d ∈ D∞ and v ∈ V∞.

Definition 4.1 corresponds to a discrete-time (exponential) version of the stability
notion from Definition 3.1 and is often used in the recent MHE literature, see, e.g.,
[RMD20; KM23; AR21; Sch+23], and compare also Section 2.2.4 for more details.
Due to the use of exponential discounting in (4.4), we have the following equivalence.

Proposition 4.1. A state estimator is RGES as characterized in Definition 4.1 if
and only if (4.4) holds with each maximization operation replaced by summation.
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Proof. The proof is straightforward and follows the lines of the proof of, e.g., [AR21,
Prop. 3.13].

In the following, we present several MHE schemes with robust stability guarantees
that in particular do not rely on optimality of the solutions, which is crucial for
practical (especially real-time) applications. Instead, stability properties are inher-
ited from an additional (potentially poorly performing) auxiliary observer. To this
end, we consider the following standard form given by a mapping g : O×U ×Y → O
with O ⊆ Rn such that, at any time t ∈ I≥0, the dynamical system

z(t+ 1) = g(z(t), u(t), y(t)), z(0) = ζ, (4.5)

with initial condition ζ ∈ O constitutes an estimate of the state x(t + 1) of the
system (4.1) using the measured inputs and outputs (u(t), y(t)) and the previous
internal state z(t) ∈ O. We assume that some observer in the form of (4.5) is
available that satisfies the following property.

Assumption 4.2 (RGES auxiliary observer). There exists an i-ISS Lyapunov function
Vo : O × X → R≥0 along with matrices P o, P o, Qo, Ro ≻ 0 and a constant ηo ∈ (0, 1)
such that

|z − x|2P o
≤ Vo(z, x) ≤ |z − x|2

P o
, (4.6a)

Vo(g(z, u, h(x, u, v)), f(x, u, d)) ≤ ηoVo(z, x) + |d|2Qo + |v|2Ro (4.6b)

for all z ∈ O and all (x, u, d, v) ∈ Z.

The i-ISS Lyapunov function Vo provided by Assumption 4.2 implies RGES (Defi-
nition 4.1) of the observer in (4.5). Such a characterization was previously used in
the context of MHE in [KMA21]. Designing state observers as in (4.5) for perturbed
nonlinear systems that admit a corresponding i-ISS Lyapunov function is an active
area of research. Assumption 4.2 can be verified with a quadratically bounded i-ISS
Lyapunov function Vo satisfying (4.6a) by employing the differential dynamics, com-
pare, e.g., [SP16; YWM22]. Alternatively, we could restrict the design to a quadratic
function Vo, where sufficient conditions can be derived based on, e.g., incremental
quadratic constraints [Zha+19] or specific Lipschitz properties [GHO92; ZB13]. A
quadratic (time-varying) function Vo also arises for Kalman-like observers, compare
[RU99; JRB05]. Note that Assumption 4.2 is our key assumption and can restrict
the class of systems to which the MHE schemes presented below are applicable.

Remark 4.1 (Observer description). We want to point out that observers as in (4.5)
are not in the most general form possible. Instead, we could simply require the
observer to be a sequence of maps {Ψt}∞

t=0 rather than a system, such that

z(t+ 1) = Ψt(ζ, {(u(j), y(j))}t
j=0), t ∈ I≥0, (4.7)

compare [ART21, Def. 2.2] and see also [SW97, Rem. 25]. This general description
would also allow for observers that do not admit a classical state-space represen-
tation, which we considered in our work [SM23d]. For auxiliary observers in the
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context of suboptimal MHE, however, such description is rather of theoretical inter-
est. This is because we are particularly interested in auxiliary observers that can
be evaluated fast and with very little computational effort (while they may produce
rather poor estimation results). Conventional observers in the form of (4.5) comply
with this condition, as they only require a simple forward simulation of the observer
dynamics. More sophisticated estimation methods that can only be described by the
general form (4.7) (such as MHE or FIE) would potentially provide better estimation
results, but would be completely contrary to our goal (i.e., developing fast suboptimal
MHE methods for real-time applications).

In Section 4.2, we consider a rather classical MHE formulation that optimizes over
trajectories of the system (4.1), where we use the auxiliary observer in (4.5) to
construct a candidate solution for the underlying optimization problem and invoke
Assumption 4.2 to infer stability of suboptimal MHE. In Section 4.3, we present a
modified MHE problem that optimizes over trajectories of the observer (4.5), where
the i-ISS Lyapunov function Vo from Assumption 4.2 directly serves as (multi-step)
Lyapunov function for suboptimal MHE.

4.2. Optimizing system trajectories

In this section, we present a suboptimal MHE scheme involving the system dynam-
ics (4.1). We specify the design in Section 4.2.1 and analyze stability in Sections 4.2.2
and 4.2.3 (considering different classes of nonlinear systems). We discuss the theo-
retical properties resulting from different setups in Section 4.2.4, extend our results
to auxiliary observers that may not satisfy the MHE constraints in Section 4.2.5,
and provide a numerical example in Section 4.2.6.
To ensure that the unknown true trajectory can actually be recovered from the
obtained input-output measurements, we use the following notion of exponential
detectability.

Assumption 4.3 (Exponential detectability). System (4.1) admits a quadratically
bounded i-IOSS Lyapunov function U : X × X → R≥0, that is, there exist matrices
P s, P s, Qs, Rs, Gs ≻ 0 and a constant ηs ∈ (0, 1) such that

|x1 − x2|2P s
≤ U(x1, x2) ≤ |x1 − x2|2P s

, (4.8a)

U(f(x1, u, d1), f(x2, u, d2))
≤ ηsU(x1, x2) + |d1 − d2|2Qs + |v1 − v2|2Rs + |h(x1, u, v1) − h(x2, u, v2)|2Gs (4.8b)

for all (x1, u, d1, v1), (x2, u, d2, v2) ∈ Z.

The i-IOSS Lyapunov function U from Assumption 4.3 is the direct discrete-time
counterpart of Definition 2.3 (for continuous-time systems) and corresponds to As-
sumption 1 in [Sch+23]. It essentially represents an (equivalent) Lyapunov char-
acterization of exponential i-IOSS, which has become standard in recent years as
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a notion of nonlinear detectability in the context of MHE, compare, e.g., [RMD20;
AR21; Hu24; KM23], and see Chapter 2 for more details on i-IOSS and nonlinear
detectability. In Section 7.1, we show how i-IOSS Lyapunov functions can be sys-
tematically constructed for general nonlinear systems using the differential dynamics
and LMIs.
In the following, we impose a compatibility condition between the i-IOSS Lyapunov
function for the system and the i-ISS Lyapunov function for the auxiliary observer.

Assumption 4.4 (Compatibility). The parameters from Assumptions 4.2 and 4.3 are
such that ηs ≤ ηo and P s ⪯ P o.

Note that Assumption 4.4 is without loss of generality, as the functions U and/or
Vo can simply be re-scaled to satisfy the compatibility conditions; we only make this
assumption for the sake of simplicity. However, we want to point out that considering
ηs ≤ ηo is quite natural, since generally no faster convergence of the observer error
(captured by ηo) can be expected than the slowest decay of the unobservable mode
of the system (captured by ηs).

4.2.1. Suboptimal MHE design

The general MHE problem considered in this section corresponds to the standard
formulation from Section 3.1, with minor technical differences. In particular, at each
time t ∈ I≥0, we consider the past input and output data in a moving time window
of length Nt = min{t, N} for some fixed N ∈ I≥0. Given the corresponding input
and output sequences restricted to the current horizon

ut = {ut(j)}Nt−1
j=0 , ut(j) = u(t−Nt + j), j ∈ I[0,Nt−1], t ∈ I≥0, (4.9)

yt = {yt(j)}Nt−1
j=0 , yt(j) = y(t−Nt + j), j ∈ I[0,Nt−1], t ∈ I≥0, (4.10)

we can state the following NLP:

min
x̂t,d̂t,v̂t

J(x̂t, d̂t, v̂t, ŷt, t) (4.11a)

s.t. x̂t(j + 1) = f(x̂t(j), ut(j), d̂t(j)), j ∈ I[0,Nt−1], (4.11b)
ŷt(j) = h(x̂t(j), u(j), v̂t(j)), j ∈ I[0,Nt−1], (4.11c)
x̂t(j) ∈ X , j ∈ I[0,Nt], (4.11d)
d̂t(j) ∈ D, v̂t(j) ∈ V , ŷt(j) ∈ Y , j ∈ I[0,Nt−1]. (4.11e)

The cost function J(·) is specified below. The decision variables x̂t = {x̂t(j)}Nt
j=0,

d̂t = {d̂t(j)}Nt−1
j=0 , and v̂t = {v̂t(j)}Nt−1

j=0 are sequences1 that contain estimates of
the state, the process disturbance, and the measurement noise over the estimation

1Compared to the problem formulation (3.4) in Section 3.1, the decision variables involve the two
sequences dt and vt instead of a single (combined) sequence wt, which is because we explicitly
distinguish between process disturbances and measurement noise in the system description
in (4.1).
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horizon, estimated at time t ∈ I≥0. They uniquely form a sequence of output
estimates ŷt = {ŷt(j)}Nt−1

j=0 under (4.11c). We consider the following cost function:

J(x̂t, d̂t, v̂t, ŷt, t) := Γ(x̂t(0), x̄(t−Nt)) +
Nt−1∑
j=0

η̄Nt−j−1L(d̂t(j), v̂t(j), ŷt(j) − yt(j)),

(4.12)
where x̄(t − Nt) is a prior estimate that is defined below and η̄ ≥ ηs is a tuning
parameter with ηs from Assumption 4.3. The stage cost L and prior weighting Γ
are selected as

Γ(x̂, x̄) = 2|x̂− x̄|2
P s
, (4.13)

L(d̂, v̂,∆y) = 2|d̂|2Qs + 2|v̂|2Rs + |∆y|2Gs , (4.14)

where the matrices P s, Qs, Rs, and Gs correspond to the i-IOSS Lyapunov function
parameters (Assumption 4.3). Note that this does not restrict any tuning possibil-
ities, as the Lyapunov function U can be suitably re-scaled such that (4.8a) and
(4.8b) hold for some desired positive definite matrices P s, Rs, Qs, Gs, compare
Remark 3.4.

Remark 4.2 (Cost function parameters). The stage cost L in (4.13) and prior weight-
ing Γ in (4.14) correspond to the choices we made in Section 3.2 and [Sch+23,
Sec. III]. This ensures a compatibility property between MHE and detectability
(i-IOSS), similar as in [KM23, Ass. 1], [AR21, Ass. 3.5], [Hu24, Ass. 4], see Sec-
tion 3.3 for more details. The design parameter η̄, however, significantly differs from
the designs proposed in Section 3.2 and [Sch+23, Sec. III], [KM23] [Hu24], which
essentially require ηs ≤ η̄ < 1 to form a discounted cost function, compare also
Remark 3.3. Here, in contrast, we do not require a strict upper bound, but merely
consider ηs ≤ η̄, which hence also covers the practically relevant case of quadratic
penalties (without discounting) for η̄ = 1. This is exclusively possible here because
we infer RGES of (suboptimal) MHE not from the detectability property of the sys-
tem, but from the stability property of the auxiliary observer (Assumption 4.2). Note,
however, that generally better theoretical guarantees (in terms of tighter error bounds
that do not deteriorate with an increasing horizon) emerge using a discounted cost
function (η̄ < 1), see also the discussion in Section 4.2.4 below.
Furthermore, we would like to emphasize that the quadratic penalties in (4.13) and
(4.14) could be modified by simply requiring boundedness of Γ and L in terms of
general power law functions in the form of Csa for arbitrary C > 0 and a ≥ 1,
which corresponds to the setup we considered in [SM23d, Ass. 2]. However, this may
result in the cost function not being differentiable at certain points, thus requiring
the use of non-standard solvers (e.g. derivative-free optimization methods [RS12]) or
the introduction of additional auxiliary decision variables, which in turn increases
the size of the optimization problem and hence the computational demand. Since
quadratic (i.e., least squares) cost functions are also the most relevant in practice,
we limit our analysis to these.

Now, rather than solving (4.11) to optimality at each time t ∈ I≥0, we consider the
following suboptimal estimator.



4. Suboptimality guarantees for real-time applications 75

Definition 4.2 (Suboptimal estimator). Let t ∈ I≥0, N ∈ I≥1, some prior estimate
x̄(t − Nt) ∈ X and the measured input-output sequences ut and yt in (4.9) and
(4.10) be given. Furthermore, let (x̃t, d̃t, ṽt) ∈ X Nt+1 × DNt × VNt denote a feasible
candidate solution to the MHE problem (4.11) with the corresponding output sequence
ỹt ∈ YNt. Then, a suboptimal solution of (4.11) is defined as any tuple (x̂t, d̂t, v̂t) ∈
X Nt+1×DNt ×VNt that satisfies (i) the MHE constraints (4.11b)–(4.11e) and (ii) the
cost decrease condition

J(x̂t, d̂t, v̂t, ŷt, t) ≤ J(x̃t, d̃t, ṽt, ỹt, t). (4.15)

The (suboptimal) state estimate at time t ∈ I≥0 is then defined as x̂(t) = x̂t(Nt).

Remark 4.3 (Decrease Condition). Note that the condition in (4.15) ensures that at
a given time t ∈ I≥0, the cost of a suboptimal solution is no larger than the cost of the
candidate solution. This property can be achieved by many off-the-shelf numerical
solvers if they are applied to the problem (4.11) with the candidate solution as a warm
start and then terminated after a finite number of iterations (including 0), compare
[PRW11]. In particular, one may implement (4.15) as an additional constraint and
use some algorithm that provides, at every iteration, a feasible estimate, which is
the case for, e.g., feasible sequential quadratic programming algorithms [LT01].
Alternatively, one could explicitly test for satisfaction of the constraints in (4.11b)–
(4.11e) and the condition in (4.15) for a given suboptimal solution (x̂t, d̂t, v̂t) (which
is obtained, e.g., after terminating the optimization algorithm after a few iterations),
and if at least one of these conditions is violated, choose the candidate solution as
the current suboptimal solution (which satisfies all constraints by definition). We
point out that this does not require warm-starting the optimizer with the candidate
solution itself; instead, any warm start could be chosen, e.g., based on the shifted
solution from one time step before, extended with a one-step forward prediction us-
ing the nominal system dynamics, compare [WVD14; Küh+11]. Taking such an
improved warm start into account while having the candidate solution (x̃t, d̃t, ṽt) in
hand to ensure condition (4.15) and thus guarantee robustly stable state estimation
can yield improved performance in practice, compare also the simulation example in
Section 4.2.6.

To establish RGES of the suboptimal estimator from Definition 4.2, we construct the
required candidate solution (x̃t, d̃t, ṽt) and the prior weighting x̄(t−Nt) by using the
auxiliary observer in (4.5) satisfying Assumption 4.2 (RGES) and Assumption 4.4
(compatibility with i-IOSS). Here, a key element is the following re-initialization
procedure. Similar to the receding horizon nature of MHE, we define a second
estimation horizon Tt := min{t, T} for some fixed length T ∈ I≥N . Then, at each
time t ∈ I≥0, we re-initialize the auxiliary observer using

ζt :=
x̂(t− T ), t ∈ I≥T

χ̂, t ∈ I[0,T −1],
(4.16)

where x̂(t − T ) is the suboptimal state estimate obtained T steps in the past and
χ̂ is the a priori guess of the true unknown initial condition χ of the system (4.1).
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Next, we perform a forward simulation

zt(j + 1) = g(zt(j), u(t− Tt + j), y(t− Tt + j)), j ∈ I[0,Tt−1], (4.17a)
zt(0) = ζt (4.17b)

and set the prior estimate according to

x̄(t−Nt) = zt(Tt −Nt), t ∈ I≥0. (4.18)

In Section 4.2.2, we first consider general nonlinear systems as in (4.1) and construct
the candidate solution based on a nominal system trajectory initialized with an
estimate provided by the auxiliary observer in (4.17). Then, in Section 4.2.3, we
consider the special case of systems that are subject to additive disturbances, which
allows us to construct the candidate solution from an observer trajectory, leading to
tighter error bounds and improved estimation results, compare also the numerical
example in Section 4.2.6. To infer stability of suboptimal MHE, the general idea is
to consider T > N and exploit the contraction property of the auxiliary observer
(provided by Assumption 4.2) from t − T to t − N through the candidate solution
(x̃t, d̃t, ṽt). In the following, we show that there always exists some T large enough
such that the suboptimal estimator from Definition 4.2 is RGES in the sense of
Definition 4.1, even when the optimizer performs zero iterations.

Remark 4.4 (Observer domain). In Sections 4.2.2 and 4.2.3, we consider the case
where the auxiliary observer in (4.17) lives in X to ensure feasibility of the candidate
solutions (which corresponds to the requirement O = X ). In practice, however, con-
ventional observers are generally not guaranteed to produce physical plausible state
estimates, and if X ⊂ Rn, there might be time instants at which the observer state
leaves the set X , for example due to transient dynamics or external perturbations.
This is addressed in Section 4.2.5, where we consider the case of O ⊃ X and employ
additional projections when constructing the candidate solutions to ensure satisfac-
tion of the MHE constraints (in particular, (4.11d)).

To summarize the overall suboptimal MHE algorithm, the steps that need to be
performed at each sampling time t ∈ I≥0 to obtain the current suboptimal state
estimate x̂(t) are as follows.

1. Collect the current data sequences ut and yt and the past suboptimal estimate
x̂(t− Tt).

2. Re-initialize2 the auxiliary observer via (4.16) and perform a forward simula-
tion of (4.17) over Tt steps.

3. Obtain the prior (4.18) and construct the candidate solution (x̃t, w̃t, ṽt).

2When implementing the proposed suboptimal MHE scheme, the observer in (4.17) does not need
to be re-initialized for t ∈ I[0,T −1], as the corresponding observer trajectories coincide in this
interval (due to the fact that their initial states are all the same by (4.16)). Consequently,
for t ∈ I[0,T −1], it suffices to apply a one-step forward prediction of (4.5) initialized with the
previous observer state.
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4. Approximately solve the MHE problem (4.11).
5. Obtain a new suboptimal estimate x̂(t) = x̂t(Nt).
6. Set t = t+ 1 and go back to 1.

4.2.2. Systems subject to nonlinear process disturbances

In this section, we consider the case where the observer in (4.5) satisfies O = X (this
will be relaxed in Section 4.2.5, compare Remark 4.4). We construct the candidate
solution (x̃t, d̃t, ṽt) based on the nominal dynamics fn initialized with a past estimate
obtained from the auxiliary observer in (4.17). Specifically, we define

x̃t(j + 1) = fn(x̃t(j), ut(j)), j ∈ I[0,Nt−1], x̃t(0) = zt(Tt −Nt), (4.19a)
d̃t(j) = 0, j ∈ I[0,Nt−1], (4.19b)
ṽt(j) = 0, j ∈ I[0,Nt−1], (4.19c)

which yields the corresponding outputs ỹt(j) = h(x̃t(j), ut(j), ṽt(j)), j ∈ I[0,Nt−1]
under (4.11c). Note that since zt(Tt −Nt) ∈ X by definition, the forward-invariance
property in (4.3) implies that the candidate solution (4.19) is feasible for the MHE
problem in (4.11).
To establish RGES of suboptimal MHE, we require an additional Lipschitz continu-
ity assumption on the perturbed dynamics f .

Assumption 4.5 (Lipschitz continuity of f). The function f is Lipschitz continuous,
i.e., there exists some constant Lf ≥ 1 such that |f(x1, u, d1)−f(x2, u, d2)| ≤ Lf(|x1−
x2| + |d1 − d2|) for all x1, x2 ∈ X and all d1, d2 ∈ D uniformly for all u ∈ U .

Assumption 4.5 entails a global Lipschitz property of f . Indeed, this can be restric-
tive in the general case of unbounded sets X , U , and D; however, it is not restrictive
if these sets are compact (which is often the case in practice). Notice also that we
impose Lf ≥ 1 in Assumption 4.5, which allows for simpler proofs and is indeed with-
out loss of generality. This could also be avoided by merely requiring that Lf > 0
in order to obtain less conservative results; however, a Lipschitz constant Lf < 1 is
rather irrelevant in our setting, as this would imply a contracting system behavior,
rendering the observer design a trivial task.
We now state a few auxiliary results. The first one provides an upper bound on the
estimation error of the observer in (4.17) (in Lyapunov coordinates) in the respective
time interval I[t−Tt,t], which we explicitly state for ease of reference.

Lemma 4.1. Suppose Assumption 4.2 applies. Let T ∈ I≥0 be arbitrary. The observer
in (4.17) satisfies

Vo(zt(j), x(t− Tt + j)) ≤ Vo(ζt, x(t− Tt))ηj
o

+
j−1∑
i=0

ηj−i−1
o

(
|d(t− Tt + i)|2Qo + |v(t− Tt + i)|2Ro

)
(4.20)

for all j ∈ I[0,Tt], all t ∈ I≥0, and all ζt, χ ∈ X , d ∈ D∞, and v ∈ V∞.
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Proof. The statement follows directly from the application of the dissipation in-
equality in (4.6b) guaranteed by Assumption 4.2 with respect to the initialization
of the observer in (4.16).

We now establish a bound on the fitting error of the candidate solution.

Lemma 4.2. Suppose that Assumptions 4.1, 4.2, and 4.5 apply. Let N ∈ I≥0 and T ∈
I≥N be arbitrary. Then, the fitting error of the trajectory defined by the candidate
solution in (4.19) satisfies

|ỹt(j) − yt(j)|2Gs

≤ σ(Nt)(j + 1)L2j
f

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

)
(4.21)

for all j ∈ I[0,Nt−1] and t ∈ I≥0, where

σ(s) = 2c1λmax(Gs)L2
hη

−s
o , s ≥ 0 (4.22)

and c1 := max{1, λmin(P o)−1, λmin(Qo)−1, λmin(Ro)−1}.

Proof. We start by considering any t ∈ I≥0 and the sequences of the true state, the
process disturbance, and the measurement noise, restricted to the current estimation
horizon:

xt = {xt(j)}Nt
j=0, xt(j) = x(t−Nt + j), j ∈ I[0,Nt], (4.23)

dt = {dt(j)}Nt−1
j=0 , dt(j) = d(t−Nt + j), j ∈ I[0,Nt−1], (4.24)

vt = {yt(j)}Nt−1
j=0 , vt(j) = v(t−Nt + j), j ∈ I[0,Nt−1]. (4.25)

Since the candidate solution in (4.19) defines a trajectory of system (4.1), we can
apply the output equation h in (4.1b). Together with Assumption 4.1 (Lipschitz
continuity of h) and Jensen’s inequality, the fitting error can be bounded by

|ỹt(j) − yt(j)|2Gs ≤ 2λmax(Gs)L2
h

(
|x̃t(j) − xt(j)|2 + |vt(j)|2

)
(4.26)

for all j ∈ I[0,Nt−1]. Recursive application of the dynamics in (4.1a) (where we recall
that d̃t(j) = 0 for j ∈ I[0,Nt−1]) together with Assumption 4.5 yields

|x̃t(j) − xt(j)| ≤ Lj
f |x̃t(0) − xt(0)| +

j∑
i=1

Li
f |dt(j − i)|. (4.27)

Squaring the result and using Jensen’s inequality leads to

|x̃t(j) − xt(j)|2

≤ (j + 1)L2j
f

|x̃t(0) − xt(0)|2 +
j∑

i=1
|dt(j − i)|2


≤ (j + 1)L2j

f

|x̃t(0) − xt(0)|2 + λmin(Qo)−1η−Nt
o

t−Nt+j−1∑
i=t−Nt

ηt−i−1
o |d(i)|2Qo

 , (4.28)
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where the last step follows by the definition of dt in (4.24) and the fact that
η−Nt

o ηi−1
o > 1 for all i ∈ I[0,Nt]. Since x̃t(0) = zt(Tt − Nt) and xt(0) = x(t − Nt)

due to the definitions of the candidate solution in (4.19) and xt in (4.23), we can
invoke Lemma 4.1, which yields

|x̃t(0) − xt(0)|2 = |zt(Tt −Nt) − x(t−Nt)|2

≤ 1
λmin(P o)

Vo(zt(Tt −Nt), x(t−Nt))

≤ η−Nt
o

λmin(P o)

Vo(ζt, x(t− Tt))ηTt
o

+
Tt−Nt−1∑

i=0
ηTt−i−1

o

(
|d(t− Tt + i)|2Qo + |v(t− Tt + i)|2Ro

)
= η−Nt

o
λmin(P o)

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt−1∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

) . (4.29)

From the combination of (4.28) and (4.29), we obtain

|x̃t(j) − xt(j)|2

≤ (j + 1)L2j
f η

−Nt
o

 1
λmin(P o)

Vo(ζt, x(t− Tt))ηTt
o

+
t−Nt−1∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

)+ 1
λmin(Qo)

t−Nt+j−1∑
i=t−Nt

ηt−i−1
o |d(i)|2Qo

.
Now, considering again (4.26) and using the definition of c1 as stated in this lemma,
we can conclude that

|ỹt(j) − yt(j)|2Gs

≤ 2c1λmax(Gs)L2
hη

−Nt
o (j + 1)L2j

f

·

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

),
where we note that the sum now includes the element i = t − Nt + j. Defining
σ : R≥0 → R≥0 according to (4.22) leads to (4.21), which finishes this proof.

We now provide an upper bound on the cost function in (4.12) evaluated at a sub-
optimal solution as defined in Definition 4.2 using the candidate solution in (4.19).

Lemma 4.3. Suppose that Assumptions 4.1, 4.2, and 4.5 apply. Let N ∈ I≥0 and
T ∈ I≥N be arbitrary. Then, the cost function in (4.12) evaluated at any suboptimal
solution provided by the estimator from Definition 4.2 using the candidate solution
in (4.19) satisfies

J(x̂t, d̂t, v̂t, ŷt, t)

≤ σ̄(Nt)
Vo(ζt, x(t− Tt))ηTt

o +
Tt∑

j=1
ηj−1

o

(
|d(t− j)|2Qo + |v(t− j)|2Ro

) (4.30)



80 4.2. Optimizing system trajectories

for all t ∈ I≥0, where

σ̄(s) := s · σ(s) ·


η̄s−L2s

f
η̄−L2

f
, η̄ ̸= L2

f

sη̄s−1, η̄ = L2
f ,

s ≥ 0 (4.31)

and σ(s) is from (4.22).

Proof. We start by employing the cost decrease condition in (4.15). By definition
of the prior estimate in (4.18) and the candidate solution (in particular, the initial
condition in (4.19a) and the zero-disturbances in (4.19b) and (4.19c)), it follows that

J(x̂t, d̂t, v̂t, ŷt, t) ≤ J(x̃t, d̃t, ṽt, ỹt, t) ≤
Nt−1∑
j=0

η̄Nt−j−1|ỹt(j) − yt(j)|2Gs

for all t ∈ I≥0. Applying Lemma 4.2 for each j ∈ I[0,Nt−1] yields

J(x̂t, d̂t, v̂t, ŷt, t)

≤ σ(Nt)
Nt−1∑
j=0

η̄Nt−j−1(j + 1)L2j
f

Vo(ζt, x(t− Tt))ηTt
o

+
t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

). (4.32)

Here, note that the argument of the inner sum is independent of j; hence, we can
simply enlarge the upper bound of summation to its maximum at j = Nt − 1 and
move the complete term in large brackets in front of the outer sum. The remaining
terms can be bounded as

Nt−1∑
j=0

η̄Nt−j−1(j + 1)L2j
f ≤ Ntη̄

Nt−1
Nt−1∑
j=0

(L2
f /η̄)j. (4.33)

Considering η̄ ̸= L2
f , by application of the geometric series we further have that

η̄Nt−1
Nt−1∑
j=0

(L2
f /η̄)j = η̄Nt−1 1 − (L2

f /η̄)Nt

1 − (L2
f /η̄) = η̄Nt − L2Nt

f
η̄ − L2

f
. (4.34)

By applying (4.33), (4.34), and the definition of σ̄ in (4.31) to (4.32), we obtain
(4.30) (the remaining case where η̄ = L2

f follows by direct computation), which
concludes this proof.

The following proposition provides a multi-step Lyapunov characterization of robust
stability for suboptimal MHE.

Proposition 4.2. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 apply. Let
N ∈ I≥0 and T ∈ I≥N be arbitrary. Then, the suboptimal estimator from Defini-
tion 4.2 using the candidate solution in (4.19) satisfies

U(x̂(t), x(t)) ≤ C(Nt)ηTt
o U(ζt, x(t− Tt))

+
Tt∑

j=1
ηj−1

o

(
|d(t− j)|2Q(Nt) + |v(t− j)|2R(Nt)

)
(4.35)
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for all t ∈ I≥0, where

C(s) := (2 + σ̄(s))λmax(P o, P s), s ≥ 0, (4.36a)
Q(s) := (2 + σ̄(s))Qo + 2Qs, s ≥ 0, (4.36b)
R(s) := (2 + σ̄(s))Ro + 2Rs, s ≥ 0 (4.36c)

with σ̄ as defined in (4.31).

Proof. Consider any t ∈ I≥0 and the true sequences xt, dt, and vt restricted to the
estimation horizon as defined in (4.23)–(4.25). Since both the true and the esti-
mated trajectory are trajectories of the system (4.1) evolving in Z, we can describe
their difference at any t ∈ I≥0 by evaluating the i-IOSS Lyapunov function from
Assumption 4.3. Specifically, applying the dissipation inequality (4.8b) recursively
for Nt times yields

U(x̂t(Nt), xt(Nt))
≤ ηNt

s U(x̂t(0), xt(0))

+
Nt−1∑
j=0

ηNt−j−1
s

(
|d̂t(j) − dt(j)|2Qs + |v̂t(j) − vt(j)|2Rs + |ŷt(j) − yt(j)|2Gs

)
(4.37)

for all t ∈ I≥0. By application of the upper bound in (4.8a) together with Cauchy-
Schwarz and Young’s inequality, we obtain that

U(x̂t(0), xt(0)) ≤ |x̂t(0) − xt(0)|2
P s

≤ 2|x̂t(0) − x̄(t−Nt)|2P s
+ 2|x̄(t−Nt) − xt(0)|2

P s
. (4.38)

Similarly, we have that

|d̂t(j) − dt(j)|2Qs ≤ 2|d̂t(j)|2Qs + 2|dt(j)|2Qs (4.39)

and
|v̂t(j) − vt(j)|2Rs ≤ 2|v̂t(j)|2Rs + 2|vt(j)|2Rs (4.40)

for all j ∈ I[0,Nt−1]. Hence, from (4.37) with (4.38)–(4.40) and the definition of the
cost function in (4.12), we obtain

U(x̂t(Nt), xt(Nt)) ≤ 2ηNt
s |x̄(t−Nt) − xt(0)|2

P s

+
Nt−1∑
j=0

ηNt−j−1
s

(
2|dt(j)|2Qs + 2|vt(j)|2Rs

)
+ J(x̂t, d̂t, v̂t, ŷt, t).

(4.41)

By definition of the prior in (4.18) and the compatibility property from Assump-
tion 4.4, the first term of the right-hand side in (4.41) can be bounded by invoking
Lemma 4.1, which yields

ηNt
s |x̄(t−Nt) − xt(0)|2

P s

≤ ηNt
s |zt(Tt −Nt) − x(t−Nt)|2P o

≤ Vo(ζt, x(t− Tt))ηTt
o +

t−Nt−1∑
j=t−Tt

ηt−j−1
o

(
|d(j)|2Qo + |v(j)|2Ro

)
. (4.42)
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Here, we note that

Vo(x̂, x) ≤ |x̂− x|2
P o

≤ λmax(P o, P s)|x̂− x|2P s
≤ λmax(P o, P s)U(x̂, x) (4.43)

for all x̂, x ∈ X . Consequently, from (4.41) and (4.42), the application of Lemma 4.3,
and (4.43), we obtain (4.35) with C,Q,R as defined in (4.36), which finishes this
proof.

Now, provided that T satisfies

ρT := C(N)ηT
o < 1, (4.44)

Proposition 4.2 implies (by the definition of ζt in (4.16)) that the i-IOSS Lyapunov
function U from Assumption 4.3 is a T -step ISS-like Lyapunov function for subop-
timal MHE, satisfying

U(x̂(t), x(t)) ≤ ρTU(x̂(t− T ), x(t− T )) +
T∑

j=1
ηj−1

o

(
|d(t− j)|2Q(N) + |v(t− j)|2R(N)

)

for all t ∈ I≥T . Here, we want to emphasize that, for each fixed N ∈ I≥0, there
always exists T large enough such that (4.44) is satisfied. Clearly, Proposition 4.2
implies RGES of suboptimal MHE, which we show next.

Theorem 4.1. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 apply. Fix
some N ∈ I≥0 and let T ∈ I≥N be such that condition (4.44) is satisfied. Then,
the suboptimal estimator from Definition 4.2 using the candidate solution (4.19) is
RGES according to Definition 4.1.

Proof. Define Q = Q(N) and R = R(N). From Proposition 4.2 and the contraction
condition (4.44), it follows that

U(x̂(t+ T ), x(t+ T )) ≤ U(x̂(t), x(t))ρT

+
T∑

j=1
ρj−1(|d(t+ T − j)|2Q + |v(t+ T − j)|2R)

for t ∈ I≥0. Recursive application of the previous bound yields

U(x̂(t+ kT ), x(t+ kT )) ≤ U(x̂(t), x(t))ρkT

+
kT∑
j=1

ρj−1
(
|d(t+ kT − j)|2Q + |v(t+ kT − j)|2R

)

for all t ∈ I[0,T −1] and all k ∈ I≥0. For t ∈ I[0,T −1], by applying the same steps as in
the proof of Proposition 4.2 but using only the first inequality in (4.43), it follows
that

U(x̂(t), x(t)) ≤ (2 + σ̄(N))ρt|χ̂− χ|2
P o

+
t∑

j=1
ρj−1

(
|d(t− j)|2Q + |v(t− j)|2R

)
.
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By combining the previous inequalities and using the lower bound in (4.8a), we
hence obtain

|x̂(t) − x(t)|2P s
≤ (2 + σ̄(N))ρt|χ̂− χ|2

P o
+

t∑
j=1

ρj−1
(
|d(t− j)|2Q + |v(t− j)|2R

)
(4.45)

for all t ∈ I≥0. By using the fact that P s, P o, Q,R are positive definite matrices
that can be bounded using their respective eigenvalues, taking the square root, and
exploiting subadditivity, it is easy to see that (4.45) corresponds to RGES in a
sum-based form. From Proposition 4.1, this is equivalent to RGES in the sense of
Definition 4.1 (in a max-based form), which concludes this proof.

Remark 4.5 (Horizon length). We want to emphasize that under the conditions of
Theorem 4.1, the proposed suboptimal estimator is RGES for any choice of N ∈ I≥0;
in other words, there is no minimum required horizon length as it is the case in, e.g.,
[Mül17; KM18; RMD20; AR19b; AR21; KM23; Hu24]. This is due to the fact that
we do not require contraction of the estimation error from time t−N to the current
time t, but establish stability by exploiting the contracting behavior of the auxiliary
observer (Assumption 4.2) from time t− T to t−N .

Remark 4.6 (Re-initializing the auxiliary observer). Note that the re-initialization
and forward simulation of the auxiliary observer as suggested in (4.16) and (4.17)
(i.e., Step 2 in the algorithm outlined below Remark 4.4) is required to compute the
prior (4.18) and the candidate solution (4.19). To save computation time, however,
it is also possible to initialize the auxiliary observer only once at time t = 0, thus
avoiding its repeated re-initialization. This is a special case of the proposed subop-
timal MHE scheme with T = t and was also considered in our work [SKM21]. The
corresponding estimation error can be directly bounded using the Lyapunov decrease
property in (4.35), which reveals that, not very surprisingly, suboptimal MHE is
RGES for T = t and any value of N ∈ I≥0. We point out that the decay rate of the
estimation error then takes the theoretically best possible value. In contrast, con-
sidering a fixed, sufficiently large constant T in (4.44) results in a worse decay rate
and a slightly more computationally intensive scheme. In practice, however, much
better estimation results are to be expected since improved suboptimal estimates are
used to re-initialize the auxiliary observer, thus introducing additional feedback into
the suboptimal estimator. This can lead to much faster recovery from a poor initial
guess, as also illustrated by the simulation example in Section 4.2.6.

4.2.3. Systems subject to additive process disturbances

We now construct a second candidate solution based on the entire trajectory of the
auxiliary observer within the estimation horizon, which therefore also includes the
most recent observer estimates. This more sophisticated approach allows us to avoid
many conservative arguments applied in the proof of Lemma 4.2, which, as we will
show below and discuss in more detail in Section 4.2.4, leads to improved theoretical
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guarantees (especially in combination with a discounted cost function using η̄ < 1).
To this end, we have to strengthen the conditions on the considered class of nonlinear
systems and auxiliary observer to ensure that the auxiliary observer forms a valid
system trajectory. In particular, we impose one-step controllability of the dynamics
in (4.1a) with respect to the process disturbance (compare [KMA21, Rem. 2]) and
consider an auxiliary observer given in output injection form [KM20; SW97].

Assumption 4.6 (Additive disturbances). The system dynamics in (4.1a) satisfy
f(x, u, d) = fn(x, u) + d.

Assumption 4.7 (Full-order state observer). The observer dynamics in (4.5) satisfy
g(z, u, y) = fn(z, u)+k(z, u, hn(z, u)−y) with the output injection law k : Rn ×Rm ×
Rp → Rn, where k(·, ·, 0) = 0. Moreover, there exists some constant κ > 0 such
that the injection law can be uniformly linearly bounded by |k(z, u, hn(z, u) − y)| ≤
κ|hn(z, u) − y| for all z ∈ O, u ∈ U , y ∈ Y.

Remark 4.7 (Full-order state observer). Assumption 4.7 consists of two parts. First,
it requires that the auxiliary observer is a full-order state observer in output injection
form, compare [KM20; SW97]. Note that this is not restrictive, since from [KM20,
Lem. 2] and [SW97, Lem. 21] it follows that any robustly stable full-order state
observer must in fact have this form. The second part states a linear bound on the
injection law k depending on the current fitting error of the observer. Although this
linear bound can be restrictive, we note that this is directly satisfied for any observer
that utilizes the injection law k(z, u, hn(z, u) − y) = K(z, u) · (hn(z, u) − y), where
K : Rn ×Rm → Rn×p forms a matrix that can be uniformly bounded on O ×U . This
is the case for nonlinear Luenberger- or Kalman-like observers (see, for example,
[GHO92; GK94; ZB13; BŢ07]) and can also be satisfied for the EKF under uniform
observability and boundedness conditions, compare [RU99].

For ease of notation, in the following we employ the definition

kt(j) := k(zt(j), u(t− Tt + j), hn(zt(j), u(t− Tt + j)) − y(t− Tt + j))

for all j ∈ I[0,Tt−1] and t ∈ I≥0. Provided that Assumptions 4.6 and 4.7 hold, the
dynamics of the system and the observer share the same structure, which allows us
to interpret the terms fn(z, u) and k of the observer dynamics directly as estimates
of the terms fn(x, u) and d of the system dynamics. We hence choose the candidate
solution

x̃t(j) = zt(Tt −Nt + j), j ∈ I[0,Nt], (4.46a)
d̃t(j) = kt(Tt −Nt + j), j ∈ I[0,Nt−1], (4.46b)
ṽt(j) = 0, j ∈ I[0,Nt−1], (4.46c)

which yields the outputs ỹt(j) = h(x̃t(j), ut(j), ṽt(j)) for all j ∈ I[0,Nt−1] and t ∈ I≥0
under (4.11c). Here, note that in case of D ⊂ Rn, we assume that kt(Tt −Nt +j) ∈ D
for all j ∈ I[0,Nt−1] and t ∈ I≥0 to ensure feasibility of the candidate solution.
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To derive robust stability guarantees for the resulting suboptimal estimator (Defi-
nition 4.2), we again start by establishing a bound on the fitting error achieved by
the candidate solution in (4.46).

Lemma 4.4. Suppose that Assumptions 4.1, 4.2, 4.6, and 4.7 apply. Let N ∈ I≥0
and T ∈ I≥N be arbitrary. Then, the fitting error of the trajectory defined by the
candidate solution (4.46) satisfies

|ỹt(j) − yt(j)|2Gs

≤ c2η
−(Nt−j−1)
o

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

) (4.47)

for all j ∈ I[0,Nt−1] and t ∈ I≥0, where

c2 = 2λmax(Gs)L2
h max

{
1, λmin(P o)−1, λmin(Ro)−1

}
. (4.48)

Proof. Due to Assumptions 4.6 and 4.7 and the candidate solution in (4.46), it
follows that x̃t(j) = zt(Tt − Nt + j) for all j ∈ I[0,Nt−1] and t ∈ I≥0. Hence, the
application of Assumption 4.1 together with the fact that ṽt(j) = 0 for j ∈ I[0,Nt−1]
by (4.46c) and the boundedness property of Vo from (4.6a) yields

|ỹt(j) − yt(j)|2Gs

≤ 2λmax(Gs)L2
h

(
|zt(Tt −Nt + j) − x(t−Nt + j)|2 + |v(t−Nt + j)|2

)
≤ 2λmax(Gs)L2

h
λmin(P o)

Vo(zt(Tt −Nt + j), x(t−Nt + j)) + 2λmax(Gs)L2
h

λmin(Ro)
|v(t−Nt + j)|2Ro

≤ c2
(
Vo(zt(Tt −Nt + j), x(t−Nt + j)) + |v(t−Nt + j)|2Ro

)
,

where in the last inequality we have used the definition of c2 from (4.48). Since the
auxiliary observer is RGES by Assumption 4.2, we can invoke Lemma 4.1, which
leads to

|ỹt(j) − yt(j)|2Gs

≤ c2

Vo(ζt, x(t− Tt))ηTt−Nt+j
o

+
Tt−Nt+j−1∑

i=0
ηTt−Nt+j−i−1

o

(
|d(t− Tt + i)|2Qo + |v(t− Tt + i)|2Ro

)

+ |v(t−Nt + j)|2Ro

.
By multiplying the sum by 1 = ηo/ηo and using the fact that 1/ηo > 1, we can move
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the term |v(t−Nt + j)|2Ro into the sum, which yields

|ỹt(j) − yt(j)|2Gs

≤ c2η
−(Nt−j−1)
o

Vo(ζt, x(t− Tt))ηTt
o

+
Tt−Nt+j∑

i=0
ηTt−i−1

o

(
|d(t− Tt + i)|2Qo + |v(t− Tt + i)|2Ro

). (4.49)

A simple change of coordinates shows that (4.49) is equivalent to (4.47), which
concludes this proof.

The following result shows that the i-IOSS Lyapunov function U from Assump-
tion 4.3 is a T -step Lyapunov function for suboptimal MHE, similar to Proposi-
tion 4.2.

Proposition 4.3. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, 4.6, and 4.7 apply.
Let N ∈ I≥0 and T ∈ I≥N be arbitrary. Then, the suboptimal estimator from
Definition 4.2 with the candidate solution in (4.46) satisfies the property in (4.35)
for all t ∈ I≥0, where C,Q,R are from (4.36) with

σ̄(s) =
(

1 + 2λmax(Qs)κ2

λmin(Gs)

)
c2 ·


1−( η̄

ηo )s

1− η̄
ηo

, η̄
ηo

̸= 1

s, η̄
ηo

= 1
, s ≥ 0. (4.50)

Proof. Consider an arbitrary time instant t ∈ I≥0 and the cost decrease condition in
(4.15). By applying the candidate solution (4.46), the prior estimate in (4.18), and
the definition of the stage cost in (4.14), we obtain

J(x̂t, d̂t, v̂t, ŷt, t) ≤ J(x̃t, d̃t, ṽt, ỹt, t) ≤
Nt−1∑
i=0

η̄Nt−j−1
(
2|d̃t(j)|2Qs + |ỹt(j) − yt(j)|2Gs

)
.

(4.51)
Here, from the definition of the candidate solution in (4.46) and Assumption 4.7, it
follows that

|d̃t(j)|2Qs ≤ λmax(Qs)|kt(Tt −Nt + j)|2

≤ λmax(Qs)κ2|hn(zt(Tt −Nt + j), ut(j)) − yt(j)|2

= λmax(Qs)κ2|ỹt(j) − yt(j)|2

≤ λmax(Qs)κ2

λmin(Gs)
|ỹt(j) − yt(j)|2Gs .

Thus, (4.51) leads to

J(x̂t, d̂t, v̂t, ŷt, t) ≤
(

1 + 2λmax(Qs)κ2

λmin(Gs)

)
Nt−1∑
j=0

η̄Nt−j−1|ỹt(j) − yt(j)|2Gs . (4.52)
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By applying Lemma 4.4, we further obtain that

J(x̂t, d̂t, v̂t, ŷt, t)

≤
(

1 + 2λmax(Qs)κ2

λmin(Gs)

)
c2

Nt−1∑
j=0

(
η̄

ηo

)Nt−j−1

·

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

) .
Now, we enlarge the inner sum by considering j = Nt − 1 in the upper bound
of summation, which renders the inner sum independent of the outer one. Then,
we define σ̄ as in (4.50), which leads to the upper bound on the suboptimal cost
J(x̂t, d̂t, v̂t, ŷt, t) as defined in (4.30). The remaining part of this proof follows by
using exactly the same steps that we applied in the proof of Proposition 4.2 (with
σ̄ from (4.50)).

Proposition 4.3 provides a T -step ISS-like Lyapunov function for suboptimal MHE
(compare the discussion below Proposition 4.2), from which we can directly infer
RGES.

Theorem 4.2. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, 4.6, and 4.7 apply. Fix
some N ∈ I≥0 and let T ∈ I≥N be such that condition (4.44) is satisfied. Then, the
suboptimal estimator from Definition 4.2 using the candidate solution in (4.46) is
RGES according to Definition 4.1.

Proof. Pick some T ∈ I≥N such that the condition in (4.44) is satisfied. The state-
ment follows by applying the same steps as in the proof of Theorem 4.1 (with C,Q,R
as defined in (4.36) using σ̄ from (4.50)).

Remark 4.8 (Uniform bounds). If the tuning parameter η̄ is chosen such that η̄ < ηo
(which is always3 possible), then σ̄(s) in (4.50) can be uniformly bounded for all
s ≥ 0. In this case, the parameters C,Q,R as defined in Proposition 4.3 also turn
out to be uniform in N , which consequently also applies to the disturbance gains
C1, C2, C3 determining the bound on the estimation error provided by Theorem 4.2
(i.e., RGES). Therefore, the choice of η̄ < ηo recovers the advantageous property of
time-discounted cost function designs (compare, for example, [KM23; Hu24]), pro-
viding an error bound that does not deteriorate when increasing the horizon length N ,
see also the discussion in Section 3.3.

We note the following corollary from Theorem 4.2, where we consider a suboptimal
version of FIE.

Corollary 4.1. Let the conditions of Theorem 4.2 hold and assume that η̄ < ηo.
Then, (suboptimal) FIE (i.e., the estimator from Definition 4.2 with N = t) using
the candidate solution (4.46) with T = N = t is RGES.

3This is immediately true if ηs < ηo (as ηs defines the lower bound on the tuning parameter η̄). In
case of ηs = ηo (which we also allow by Assumption 4.4), one can easily find some η̃o ∈ (ηo, 1)
and replace every ηo by η̃o, which again allows for choosing η̄ such that ηs ≤ η̄ < η̃o is satisfied.



88 4.2. Optimizing system trajectories

Table 4.1. Summary the different MHE setups considered in Sections 4.2.2 and 4.2.3.

System Candidate solution Result Scaling factor

f(x, u, d) system trajectory (4.19) Thm. 4.1 Nη−N
o

η̄N −L2N
f

η̄−L2
f
, η̄ ̸= L2

f

fn(x, u) + d observer trajectory (4.46) Thm. 4.2 1−(η̄/ηo)N

1−(η̄/ηo) , η̄ ̸= ηo

Proof. The statement directly follows from the fact that suboptimal FIE is a special
case of the proposed suboptimal MHE scheme (with Tt = Nt = t). Since η̄ < ηo
holds by assumption, the parameters C,Q,R in Proposition 4.3 can be rendered
uniform in N , see Remark 4.8. Specifically, the property in (4.35) with Tt = Nt = t,
the matrices C,Q,R from (4.36) with σ̄ replaced by σ̄∞ := lim

s→∞
σ̄(s) and σ̄(s)

from (4.50) provides a valid bound on the estimation error of (suboptimal) FIE for
all t ∈ I≥0, from which RGES (Definition 4.1) can be directly inferred (see the last
part of the proof of Theorem 4.1).

4.2.4. Discussion

Table 4.1 summarizes the main characteristics of the suboptimal MHE schemes
presented in Sections 4.2.2 and 4.2.3. Here, the first column shows the class of
systems to which the candidate solution in the second column is applicable, the
third column refers to the corresponding result establishing RGES of suboptimal
MHE, and the last column shows a scaling factor appearing in the disturbance gains
C1, C2, C3 (compare Definition 4.1) to indicate their dependency on the horizon
length N and the tuning parameter η̄.
As can be seen from the first row of Table 4.1, the use of the candidate solution (4.19)
allows for considering general nonlinear systems. However, since only a single state
estimate of the auxiliary observer is considered for the construction of the candidate
solution (to form its initial state) and otherwise the nominal system dynamics are
employed, many overly conservative steps had to be applied, especially in the proof
of Lemma 4.2. This particularly refers to (i) the recursive application of the Lipschitz
property of f (which results in a dependency on LN

f ); (ii) the fact that we can exploit
the stability property of the observer only once but want to establish RGES with
exponentially discounted disturbances (resulting in the factor η−N

o ); (iii) the fact
that we aim for a bound in terms of a sum of squares (instead of a squared sum),
which results in the factor N from the application of Jensen’s inequality. Here,
the improvement obtained by using a discounted cost function design (η̄ < 1) is
negligible, as the exponential dependency on N remains.
By strengthening the requirements on the setting (considering additive disturbances
in Assumption 4.6 and a full-order state observer involving a linearly bounded output
injection law in Assumption 4.7), we can construct a more sophisticated candidate
solution in (4.46) based on the entire trajectory of the auxiliary observer within the
estimation horizon, see the second row in Table 4.1. Since more recent observer
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estimates are thus also taken into account, we can avoid the repeated use of the
Lipschitz property of f and Jensen’s inequality. This results in disturbance gains
that depend on the ratio η̄/ηo, that is, we obtain linear growth in N when η̄ = ηo and
exponential growth when η̄ > ηo. However, in the case of η̄ < ηo, the disturbance
gains approach a fixed value for N → ∞, thus applying uniformly for all N ∈ I≥0,
see Remark 4.8. Overall, this setup together with the choice of η̄ < ηo provides
the potentially least conservative error bound of the suboptimal MHE methods
considered here (depending on the constants involved).

4.2.5. Auxiliary observers leaving the domain of the system

Until now, we assumed that the auxiliary observer in (4.5) evolves in X by imposing
that O = X , which was necessary to ensure that the candidate solutions in (4.19) and
(4.46) result in valid system trajectories that satisfy the MHE constraints in (4.11d)
and (4.11e). However, it is well-known that state observers in the form of (4.5)
do not necessarily provide physically plausible estimates and hence may leave a
corresponding set X due to transient dynamics or external perturbations (consider,
for example, the peaking phenomenon in high-gain observers [KP13]). This is a
general weakness of conventional observer designs, which may lead to a lack of
accuracy, implementation problems, or, in the worst case, to the destabilization of
the system in output feedback designs, compare [Ast+21]. Here, a key advantage
of optimization-based state estimation methods (such as MHE) becomes apparent,
where such constraints can be naturally taken into account. In order to maintain
this feature with the previously developed suboptimal MHE methods, we have to
suitably adapt the candidate solutions and prior estimate to account for an auxiliary
observer that may violate the constraints.
In the following, we therefore consider O ⊃ X , where we assume that X is convex.
To render the candidate solutions (4.19) and (4.46) feasible, one could apply the re-
design strategy proposed in [Ast+21] to ensure that the modified auxiliary observer
satisfies the constraints. However, this severely limits the set of possible observers
to a particular method and does not allow for user-defined customization. Instead,
we use the projection function pX : Rn → X to project the observer state z onto the
set X , which can be defined as

pX (z) := arg min
x∈X

|z − x|. (4.53)

Associated with the auxiliary observer (4.17), we furthermore define the projection
error (that is, the difference between the observer state and its projection):

εt(t− j) := zt(Tt − j) − pX (zt(Tt − j)), j ∈ I[0,Tt], t ∈ I≥0. (4.54)

Here, note that εt(t − j) = 0 if zt(Tt − j) ∈ X . We aim to show the following
property of suboptimal MHE.

Definition 4.3 (ε-RGES). A (suboptimal) moving horizon estimator for the system
in (4.1) is ε-RGES if there exist constants C1, C2, C3, Cϵ > 0 and ρ ∈ (0, 1) such
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that the resulting state estimate x̂(t) with x̂(0) = χ̂ satisfies

|x̂(t) − x(t)| ≤ max
{
C1ρ

t|χ̂− χ|, max
j∈I[0,t−1]

C2ρ
t−j−1|d(j)|, max

j∈I[0,t−1]
C3ρ

t−j−1|v(j)|,

max
j∈I[0,t−1]

Cερ
t−j−1|ετ(j)(j)|

}
(4.55)

for all t ∈ I≥0, all initial conditions χ̂, χ ∈ X , and all disturbance sequences d ∈ D∞

and v ∈ V∞, where τ(j) := t− ⌊ t−j
T

⌋T .

Remark 4.9 (ε-RGES). The property in (4.55) defines a slightly modified version
of the stability notion given in Definition 4.1 that incorporates an additional dis-
turbance term induced by the projection error ε. If satisfied, it directly reveals that
the influence of the projection error is bounded and decays over time. Note that by
Assumption 4.2, the estimation error of the observer converges to a neighborhood of
the origin for t → ∞. Hence, if the true system state evolves in the interior of X
and if the true disturbances d and v are small enough, there exists some t∗ such that
z(t) ∈ X for all t ∈ I≥t∗. Consequently, in this case the influence of the projection
error converges to zero for t → ∞. Note also that, since we treat the difference be-
tween the observer estimate and its projection as an additional disturbance in (4.55),
the theoretical bound on the estimation error for suboptimal MHE gets worse when
considering O ⊃ X . In practice, however, better results can be expected [RMD20,
Sec. 4.4], especially in combination with the proposed re-initialization strategy of the
auxiliary observer, which can also be seen in the example in Section 4.2.6.

We now adapt both candidate solutions from (4.19) and (4.46) by employing the
projection function pX in (4.53). For the first case, we construct a nominal system
trajectory initialized with the projected observer state. Specifically, the candidate
solution (4.19) is modified to

x̃t(j + 1) = fn(x̃t(j), ut(j)), j ∈ I[0,Nt−1], x̃t(0) = pX (zt(Tt −Nt)), (4.56a)
d̃t(j) = 0, j ∈ I[0,Nt−1], (4.56b)
ṽt(j) = 0, j ∈ I[0,Nt−1]. (4.56c)

In a similar fashion, we modify the prior estimate in (4.18) according to

x̄(t−Nt) = pX (zt(Tt −Nt)). (4.57)

Under these adaptions, we can guarantee ϵ-RGES of suboptimal MHE as shown in
the following result.

Theorem 4.3. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 apply. Fix some
N ∈ I≥0. Then, there exists T ∈ I≥N such that the suboptimal moving horizon
estimator from Definition 4.2 using the candidate solution in (4.56) and the prior
estimate in (4.57) is ε-RGES in the sense of Definition 4.3.
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Proof. The proof follows similar lines as the proofs in Section 4.2.2. For ease of
comprehension, we have structured it into three parts: first, we derive a bound
on the fitting error of the modified candidate solution; second, we derive an upper
bound on the suboptimal cost; third, we invoke i-IOSS and conclude RGES.
Part I. We start by following similar arguments that were needed to establish
Lemma 4.2, where the first steps to derive (4.27) remain unchanged. Here, due
to the modified candidate solution in (4.56) and the definition of the projection
error in (4.54), we have that

|x̃t(0) − x(t−Nt)|2

≤ 2|zt(Tt −Nt) − x(t−Nt)|2 + 2|x̃t(0) − zt(Tt −Nt)|2

= 2|zt(Tt −Nt) − x(t−Nt)|2 + 2|pX (zt(Tt −Nt)) − zt(Tt −Nt)|2

= 2|zt(Tt −Nt) − x(t−Nt)|2 + 2|εt(t−Nt)|2.

Applying similar steps that followed (4.28), observe that (4.21) can be modified to

|ỹt(j) − yt(j)|2Gs

≤ 2σ(Nt)(j + 1)L2j
f

Vo(ζt, x(t− Tt))ηTt
o +

t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro

)

+ ηNt
o |εt(t−Nt)|2

 (4.58)

for all j ∈ I[0,Nt−1] and t ∈ I≥0.
Part II. Performing similar steps as in the proof of Lemma 4.3 using (4.58), the
bound on the suboptimal cost in (4.30) is modified to

J(x̂t, d̂t, v̂t, ŷt, t)

≤ 2σ̄(Nt)
Vo(ζt, x(t− Tt))ηTt

o +
Tt∑

j=1
ηj−1

o

(
|d(t− j)|2Qo + |v(t− j)|2Ro

)

+ ηNt
o |εt(t−Nt)|2

. (4.59)

Part III. We use similar arguments as in the proof of Proposition 4.2 and first
derive (4.41). Here, we additionally note that

|x̄(t−Nt) − xt(0)|2
P s

≤ |pX (zt(Tt −Nt)) − x(t−Nt)|2P s

≤ 2|zt(Tt −Nt) − x(t−Nt)|2P s
+ 2λmax(P s)|εt(t−Nt)|2

≤ 2Vo(zt(Tt −Nt), x(t−Nt)) + 2λmax(P s)|εt(t−Nt)|2,
(4.60)

where the latter inequality followed by invoking Assumption 4.4 and boundedness of
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Vo from (4.6a). By performing analogous steps as in (4.37)–(4.41), we hence obtain

U(x̂t(Nt), xt(Nt))

≤ 4ηNt
s Vo(zt(Tt −Nt), x(t−Nt)) +

Nt∑
j=1

ηj−1
s

(
2|d(t− j)|2Qs + 2|v(t− j)|2Rs

)
+ 4ηNt

s λmax(P s)|εt(t−Nt)|2 + J(x̂t, d̂t, v̂t, ŷt, t). (4.61)

By applying Lemma 4.1, the upper bound on the suboptimal cost from (4.59), and
the fact that ηs ≤ ηo (Assumption 4.4), it follows that

U(x̂t(Nt), xt(Nt))

≤ C(Nt)ηTt
o U(ζt, x(t−Nt)) +

Nt∑
j=1

ηj−1
s

(
|d(t− j)|2Q(Nt) + |v(t− j)|2R(Nt)

)
+
(
4λmax(P s)ηNt

s + 2σ̄(Nt)ηNt
o

)
|εt(t−Nt)|2

≤ C(Nt)ηTt
o U(ζt, x(t−Nt))

+
Nt∑

j=1
ηj−1

o

(
|d(t− j)|2Q(Nt) + |v(t− j)|2R(Nt) + Cϵ(Nt)|εt(t− j)|2

)
, (4.62)

where4

C(s) := 2(2 + σ̄(s))λmax(P o, P s), s ≥ 0, (4.63a)
Q(s) := 2(2 + σ̄(s))Qo + 2Qs, s ≥ 0, (4.63b)
R(s) := 2(2 + σ̄(s))Ro + 2Rs, s ≥ 0, (4.63c)
Cϵ(s) := 2ηo(2λmax(P s) + σ̄(s)), s ≥ 0. (4.63d)

Note that the bound in (4.62) implies an ISS-like Lyapunov decrease property for
suboptimal MHE, similar to Proposition 4.2. Now, suppose that T satisfies the
contraction condition in (4.44) with C from (4.63a). Then, we can apply the same
steps as in the proof of Theorem 4.1 to infer that suboptimal MHE is ε-RGES in
the sense of Definition 4.3, which hence concludes this proof.

We now consider the case where the system in (4.1) is subject to additive distur-
bances (Assumption 4.6) and where the observer in (4.5) specializes to a full-order
state observer in output injection form (Assumption 4.7). This allows us to consider
(and modify) the candidate solution in (4.46), leading to improved theoretical prop-
erties. To this end, we project the whole state trajectory of the observer restricted
to the current estimation horizon onto the set X , yielding x̃t(j) = pX (zt(Tt −Nt +j))
for all j ∈ I[0,Nt] and t ∈ I≥0. To obtain some d̃t(j) such that the system dynamics
(4.1a) (under Assumption 4.6) are satisfied, we again exploit one-step controllability

4Note that the last step applied in (4.62) is indeed conservative and could also be avoided.
However, this allows for much simpler and concise proofs, since an inequality similar to (4.62)
naturally appears when using the observer-based candidate solution, which is shown in the
subsequent theorem.
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with respect to the disturbance input d. Overall, we modify the candidate solution
(4.46) according to

x̃t(j) = pX (zt(Tt −Nt + j)), j ∈ I[0,Nt], (4.64a)
d̃t(j) = pX (zt(Tt −Nt + j + 1))

− fn(pX (zt(Tt −Nt + j)), ut(j)), j ∈ I[0,Nt−1], (4.64b)
ṽt(j) = 0, j ∈ I[0,Nt−1]. (4.64c)

Here, in case of D ⊂ Rq, we assume that d̃t(j) ∈ D for all j ∈ I[0,Nt−1] and t ∈ I≥0
to ensure feasibility of the candidate solution, compare Section 4.2.3.

Theorem 4.4. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 apply.
Fix some N ∈ I≥0. Then, there exists T ∈ I≥N such that the suboptimal moving
horizon estimator from Definition 4.2 using the candidate solution (4.64) and the
prior estimate in (4.57) is ε-RGES in the sense of Definition 4.3.

Proof. The proof follows similar lines as the proofs in Section 4.2.3 and Theorem 4.3.
We have again divided it into three parts, where we first derive a bound on the fitting
error of the modified candidate solution, then on the suboptimal cost, and finally
invoke i-IOSS and conclude RGES.
Part I. We start by applying the same steps as in the proof of Lemma 4.4. Using
the candidate solution (4.64), the output equation (4.1b), the triangle inequality,
and Assumption 4.1, the fitting error of the candidate solution can be bounded by

|ỹt(j) − yt(j)|2Gs

≤ λmax(Gs)|ỹt(j) − yt(j)|2

≤ λmax(Gs)L2
h(|x̃t(j) − xt(j)| + |vt(j)|)2

≤ λmax(Gs)L2
h(|x̃t(j) − zt(Tt −Nt + j)| + |zt(Tt −Nt + j) − xt(j)| + |vt(j)|)2

for all j ∈ I[0,Nt−1] and all t ∈ I≥0. Using Jensen’s inequality, the definition of the
projection error in (4.54), and the lower bound of Vo in (4.6a), it follows that

|ỹt(j) − yt(j)|2Gs ≤ 3λmax(Gs)L2
h

( 1
λmin(P o)

Vo(zt(Tt −Nt + j), x(t−Nt + j))

+ 1
λmin(Ro)

|v(t−Nt + j)|2Ro + |εt(t−Nt + j)|2
)
.

The application of Lemma 4.1 then yields a slightly modified version of Lemma 4.4,
that is, the bound

|ỹt(j) − yt(j)|2Gs ≤ 3
2c2η

−(Nt−j−1)
o

Vo(ζt, x(t− Tt))ηTt
o

+
t−Nt+j∑
i=t−Tt

ηt−i−1
o

(
|d(i)|2Qo + |v(i)|2Ro + |εt(j)|2

)
(4.65)
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for all j ∈ I[0,Nt−1] and all t ∈ I≥0, where c2 is from (4.48).

Part II. Now, we consider the suboptimal cost J(x̂t, d̂t, v̂t, ŷt, t) and follow the first
part of the proof of Proposition 4.3 to derive (4.51). To establish a bound on the term
|d̃t(j)|2Qs , we first note that for a given a ∈ Rn, |pX (a) − b| ≤ |a− b| for any b ∈ X ,
since by convexity of X and optimality of pX , the angle between pX (a)−a and a− b
is obtuse [HL93, Thm. 3.1.1, p. 117]. Now, consider the definition of the candidate
disturbance d̃t(j), j ∈ I[0,Nt−1] from (4.64c) and recall that fn(x̃t(j), ut(j)) ∈ X (due
to the invariance property from (4.3) and the fact that x̃t(j) ∈ X by definition).
The application of Assumptions 4.5 and 4.7, the definition of the projection error
in (4.54), the triangle inequality, and Assumption 4.1 then lets us infer that

|d̃t(j)| = |pX (zt(T −Nt + j + 1)) − fn(x̃t(j), ut(j))|
≤ |zt(T −Nt + j + 1) − fn(x̃t(j), ut(j))|
= |fn(zt(T −Nt + j + 1), ut(j)) + kt(Tt −Nt + j) − fn(x̃t(j), ut(j))|
≤ Lf |zt(Tt −Nt + j) − x̃t(j)| + |kt(Tt −Nt + j)|
≤ Lf |εt(t−Nt + j)| + κ|hn(zt(Tt −Nt + j), ut(j)) − yt(j)|
≤ Lf |εt(t−Nt + j)| + κ|hn(zt(Tt −Nt + j), ut(j)) − hn(x̃t(j), ut(j))|

+ κ|hn(x̃t(j), ut(j)) − yt(j)|
≤ (Lf + κLh)|εt(t−Nt + j)| + κ|ỹt(j) − yt(j)|

for all j ∈ I[0,Nt−1] and t ∈ I≥0. Hence, by using Jensen’s inequality, we obtain

|d̃t(j)|2Qs ≤ λmax(Qs)|d̃t(j)|2

≤ 2λmax(Qs)(Lf + κLh)2|εt(t−Nt + j)|2 + 2λmax(Qs)κ2

λmin(Gs)
|ỹt(j) − yt(j)|2Gs

(4.66)

for all j ∈ I[0,Nt−1] and t ∈ I≥0. Combining (4.51) with the bounds in (4.65) and
(4.66) leads to

J(x̂t, d̂t, v̂t, ŷt, t) ≤
(

1 + 4λmax(Qs)κ2

λmin(Gs)

)
Nt−1∑
j=0

η̄Nt−j−1|ỹt(j) − yt(j)|2Gs

+ 4λmax(Qs)(Lf + κLh)2
Nt−1∑
j=0

η̄Nt−j−1|εt(t−Nt + j)|2.

Using (4.65), we further obtain that

J(x̂t, d̂t, v̂t, ŷt, t)

≤ 2σ̄(Nt)
Vo(ζt, x(t− Tt))ηTt

o +
Tt∑

j=1
ηj−1

o

(
|d(t− j)|2Qo + |v(t− j)|2Ro

)
+ σε(Nt)

Tt∑
j=1

η̄j−1|εt(t− j)|2, (4.67)

where
σε(s) :=

(
2σ̄(Nt) + 4λmax(Qs)(Lf + κLh)2

)
max {1, (η̄/ηo)s} (4.68)
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and

σ̄(s) = 3
4

(
1 + 4λmax(Qs)κ2

λmin(Gs)

)
c2 ·


1−( η̄

ηo )s

1− η̄
ηo

, η̄
ηo

̸= 1

s, η̄
ηo

= 1
, s ≥ 0. (4.69)

Note that the factor 2 preceding σ̄ in (4.67) (and (4.68)) is intentional and canceled
by an additional factor 1/2 in (4.69) in order to match the notation to the proof
of Theorem 4.3 and thus enable a more direct comparison and concise derivation in
the following Part III.
Part III. We proceed similarly to the proof of Theorem 4.3 and first derive (4.61).
Using the bound on the suboptimal cost from (4.67), we can establish (4.62), where
C,Q,R are as defined in (4.63) using σ̄ from (4.69) and Cε(s) := 4ηsλmax(P s)+σε(s).
The remaining part follows by applying the same steps in the proof of Theorem 4.3
that were applied after (4.62), which finishes this proof.

To summarize, by using the modified candidate solutions in (4.56) and (4.64) and
the prior estimate in (4.57), we can cover the practically relevant case where the
auxiliary observer in (4.5) may leave the set X . Specifically, we could preserve
robust stability and constraint satisfaction guarantees of suboptimal MHE without
requiring any changes to the design of the auxiliary observer.

4.2.6. Numerical example

We adapt the example from [RMD20, Example 4.39] and consider the set of re-
versible reactions A ⇌ B + C, 2B ⇌ C taking place in a well-stirred, isothermal,
gas-phase batch reactor. The Euler-discretized model describing the evolution of
the concentrations of the species A, B, and C over time corresponds to

x+
1 = x1 + t∆(−p1x1 + p2x2x3) + d1,

x+
2 = x2 + t∆(p1x1 − p2x2x3 − 2p3x

2
2 + 2p4x3) + d2,

x+
3 = x3 + t∆(p1x1 − p2x2x3 + p3x

2
2 − p4x3) + d3,

y = x1 + x2 + x3 + v,

(4.70)

where t∆ = 0.25 is the step size and d ∈ R3 and v ∈ R are additional process dis-
turbances and measurement noise. We consider the parameters p1 = 0.2, p2 = 0.05,
p3 = 0.2, and p4 = 0.1 and select the initial conditions χ = [0.5, 0.05, 0.1]⊤ and χ̂ =
[2, 0.5, 0]⊤. We consider the prior knowledge X = {x ∈ R3 : 0 ≤ xi ≤ 3, i = 1, 2, 3},
where non-negativity follows from the physical nature of the system (substance con-
centrations cannot be negative) and the upper bound provides a compact set with
respect to realistic initial conditions and disturbances. During the simulations, the
disturbances d and v are treated as uniformly distributed random variables that are
sampled from the sets {d ∈ R3 : |di| ≤ 10−3, i = 1, 2, 3} and {v ∈ R : |v| ≤ 5 · 10−2}.
Note that since we consider additive disturbances in (4.70), Assumption 4.6 holds
true. Moreover, the functions f and h are Lipschitz on X with Lipschitz constants
Lf = 1.032 and Lh = |[1, 1, 1]| = 1.732, which renders Assumptions 4.1 and 4.5 valid.
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In the following, we verify the remaining technical assumptions used in the previ-
ous sections, implement the proposed suboptimal MHE schemes, and compare the
respective estimation results with established methods from the literature. The sim-
ulations are performed on a standard laptop (Intel Core i7 with 2.6 GHz, 12 MB
cache, and 16 GB RAM under Ubuntu Linux 20.04) in MATLAB with CasADi
[And+18] and the NLP solver IPOPT [WB05]; LMIs are solved using YALMIP
[Löf04] and MOSEK [MOS24].

Observer design and i-IOSS verification

For the system in (4.70), we design a conventional Luenberger observer in the form
of

z+ = g(z, y) = fn(z) +K · (hn(z) − y). (4.71)

Note that this choice immediately validates Assumption 4.7. We compute the con-
stant observer gain K ∈ Rn×p based on the differential dynamics, where a sufficient
LMI condition analogous to the dual (i.e., control) problem considered in [MS18]
can be derived. Here, the domain O of the observer is chosen as a proper superset
of X by selecting O = {z ∈ R3 : −0.04 ≤ z2 ≤ 4,−2 ≤ z3 ≤ 4}, as the observer
is not guaranteed to adhere to the physical constraint of non-negative states (i.e.,
substance concentrations), see also Figure 4.1 below. By imposing a quadratic Lya-
punov function Vo(z, x) = |z − x|2P (leading to P o = P o = P in (4.6a)), we can thus
verify Assumption 4.2 on O with ηo = 0.97 and

K =

−0.1
−0.1
−0.5

 , P =

3.100 2.170 1.674
2.170 4.210 2.154
1.674 2.154 3.077

 , Qo =

103 0 0
0 103 0
0 0 103

 , Ro = 103.

Now, we compute an i-IOSS Lyapunov function U for the system in (4.70) that
satisfies Assumption 4.3. To this end, we adapt Corollary 7.1 in Section 7.1.1 to
our current setup (that is, considering distinct process disturbances d and measure-
ment noise v instead of a generalized disturbance input w = (d, v)). We verify the
corresponding LMI conditions on the set X while imposing U(x1, x2) = Vo(x1, x2)
to ensure the compatibility condition in Assumption 4.4 and achieve the smallest
possible value of λmax(P o, P s) = 1 (which is generally beneficial in practice to allow
for smaller disturbance gains and observer horizons T ). The remaining parameters
are ηs = 0.9383 and

Qs =

102 0 0
0 102 0
0 0 102

 , Rs = 102, Gs = 50.

Thus, all technical assumption employed in the theoretical analysis in Sections 4.2.2–
4.2.5 are verified.
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Table 4.2. Value of Tmin for different state constraints and candidate solutions.

Admissible constraint Candidate solution Result Tmin

x̂t(j) ∈ O System trajectory (4.19) Theorem 4.1 263
Observer trajectory (4.46) Theorem 4.2 247

x̂t(j) ∈ X System trajectory (4.56) Theorem 4.3 286
Observer trajectory (4.64) Theorem 4.4 349

Suboptimal MHE design

In the following, we consider the cost function in (4.12) and select the horizon length
N = 3, parameterize the prior weighting and stage cost in (4.13) and (4.14) according
to the i-IOSS Lyapunov function parameters from above, and choose η̄ = ηs. We
first compare the theoretical requirements for suboptimal MHE using the candidate
solutions in (4.19) and (4.46) (which do not allow the inclusion of prior knowledge
about the set X ⊂ O in the MHE problem in (4.11)) and the projected candidate
solutions in (4.56) and (4.64) (which allow enforcing the state constraint x̂t(j) ∈ X ,
j ∈ I[0,Nt−1] in (4.11d)).
Table 4.2 compares the estimates of the minimum required observer horizons Tmin
to guarantee robust stability of suboptimal MHE provided by Theorems 4.1–4.4.
For the first case (x̂t(j) ∈ O), we observe that the observer-based candidate so-
lution (4.46) provides a tighter error bound (and hence yields a smaller estimate
of Tmin) compared to the system-based candidate solution (4.19), which is in line
with the main observations in Section 4.2.4. For the second case (x̂t(j) ∈ X ), the
respective error bounds (and thus the estimates of Tmin) are larger compared to
the first case, which is due to additional conservative steps in the respective proofs
leading to more conservative disturbance gains, compare the respective formulas
in (4.36) and (4.63); this in particular applies to the proof of Theorem 4.4, resulting
in slightly more conservative guarantees and hence a larger value of Tmin compared to
that required by Theorem 4.3. In practice, however, better estimation results can be
expected if knowledge about X is included in the MHE scheme and a corresponding
candidate solution is used, compare also the simulation results below.
Generally, we note that the values of Tmin in Table 4.2 are rather large. This is
on the one hand due to the fact that we guarantee robust stability of suboptimal
MHE without any optimization, and on the other hand due to various conservative
steps within the respective proofs; hence, the guarantees are rather of conceptual
nature, and good simulation results are also obtained for much smaller values of T .
However, it should be noted that the estimates of Tmin do not jeopardize the real-
time capability of suboptimal MHE, as this only determines the forward simulation
of the observer in (4.71) (which is computationally cheap and has fixed complexity).
Moreover, we want to point out that a valid choice is always T = t, which would
directly lead to RGES of suboptimal MHE for each candidate solution from above
and any horizon length N , while only one observer iteration needs to be performed
at each time step to construct the current candidate solution, compare Remark 4.6.
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Figure 4.1. Comparison of suboptimal MHE results using the candidate solution in (4.56)
(blue) and the candidate solution in (4.64) (cyan) after performing i = 3 steps of the
optimizer (IPOPT), the Luenberger observer (red), real system states (black), and output
measurements y (green dots). The light magenta curves show the estimation results of
suboptimal MHE using the unmodified (i.e., non-projected) candidate solution (4.46) and
x̂t(j) ∈ O, j ∈ I[0,Nt] in (4.11d). Solid lines correspond to the first state x1, x̂1, z1, dashed-
dotted lines to the third state x3, x̂3, z3 (where the minimum value of z3 is z3(2) = −1.015).
The gray dashed line represents the lower bound of the set X .

In the following, we focus on suboptimal MHE involving the state constraint x̂t(j) ∈
X in (4.11d) to avoid potentially poor transient behavior caused by the Luenberger
observer, compare Figures 4.1 and 4.2 below. Specifically, we implement two subop-
timal estimators relying on the projected candidate solutions from (4.56) and (4.64),
respectively. To ensure feasibility of the candidate solutions, we consider D = Rn

and V = Y = Rp in the MHE problem in (4.11e). To illustrate the potential of
the proposed re-initialization strategy in practice, we choose T = 5 in the following,
although we must note that this choice is not theoretically covered.

Simulation results

Figure 4.1 shows the estimation results of the suboptimal estimators after performing
i = 3 steps of the optimizer (IPOPT) compared to the real system states and
the Luenberger observer from (4.71), which we use for constructing the candidate
solutions and the warm start for the optimizer. We observe that both suboptimal
estimators are capable of improving the estimates of the auxiliary observer (that
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Figure 4.2. Estimation error for the Luenberger observer (red) compared to suboptimal
MHE using the system-based candidate solution in (4.56) (blue) and the observer-based
candidate solution in (4.64) (cyan) after performing i = 3 steps of the optimizer (IPOPT).
Solid lines correspond to T = 5, dashed-dotted lines to T = t (i.e., without re-initializing
the auxiliary observer). The light magenta curve shows the estimation error of suboptimal
MHE for the case of N = 3, T = 5, and i = 3 using the unmodified (i.e., non-projected)
candidate solution (4.46) and the constraint x̂t(j) ∈ O, j ∈ I[0,Nt] in (4.11d).

leaves the set X in its transient phase) while providing physically plausible estimates.
The corresponding estimation errors over time are depicted in Figure 4.2 (solid
lines), which illustrates robust stability, fast convergence, and overall significantly
improved behavior compared to the Luenberger observer. This advantage becomes
particularly apparent when comparing the results with suboptimal MHE using the
set O instead of X as state constraint (this corresponds to the first case in Table 4.2),
which yields physically implausible estimates and only slightly improves the results
of the auxiliary observer, see the light magenta curves in Figures 4.1 and 4.2.
Figure 4.2 additionally shows the estimation error of suboptimal MHE with T = t
(i.e., without re-initializing the auxiliary observer). Here, the suboptimal estima-
tors initially show a significant improvement compared to the Luenberger observer,
which is mainly due to the fact that the corresponding estimates satisfy the state
constraints X . However, without re-initializing the observer with an improved sub-
optimal estimate, the prior weighting causes the suboptimal estimates to converge
close to its trajectory again. This illustrates the effectiveness of the proposed re-
initialization strategy, which provides the ability to quickly recover from a poor
transient behavior of the auxiliary observer, see also Remark 4.6.
For a more detailed numerical comparison, we employ two different performance
metrics: the sum of squared errors (SSE) defined as SSE := ∑tsim

t=0 |x̂(t) − x(t)|2
and the normalized accumulated cost Jacc := 1

N

∑tsim
t=0 J(x̂t, d̂t, v̂t, ŷt, t). To evaluate

the computational complexity, we also consider the average computation time per
sample τavrg (considering all t ∈ I≥N). Table 4.3 compares the values of the SSE,
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Table 4.3. Estimation performance for different configurations of suboptimal MHE.

Configuration candidate solution (4.56) candidate solution (4.64)
N T i SSE Jacc τavrg SSE Jacc τavrg

3 5 0 16.09 740.31 1.88 13.06 486.66 1.88
3 5 1 3.00 24.05 2.60 3.19 26.66 2.60
3 5 2 2.58 23.01 3.29 2.61 22.92 3.30
3 5 3 2.68 22.48 4.01 2.68 22.48 4.01
3 5 4 2.81 22.42 4.70 2.81 22.43 4.69
3 5 5 2.90 22.38 5.37 2.91 22.38 5.38
3 5 10 2.97 22.34 6.69 2.97 22.34 6.67
3 5 ∗ 2.97 22.36 6.64 2.97 22.36 6.63
10 15 0 25.07 1295.10 2.08 15.16 457.06 2.09
10 15 1 4.55 100.19 2.85 3.67 27.93 2.86
10 15 2 2.49 20.35 3.60 2.55 20.09 3.61
10 15 3 2.56 19.89 4.36 2.62 19.75 4.36
10 15 4 2.70 19.65 5.16 2.72 19.64 5.18
10 15 5 2.76 19.74 5.92 2.78 19.73 5.93
10 15 10 2.84 19.67 7.53 2.84 19.67 7.52
10 15 ∗ 2.83 19.72 7.60 2.83 19.72 7.58
Each value represents the average over 100 simulations of length tsim = 60; asterisks represent
fully converged optimization problems; the Luenberger observer achieves SSE = 28.65.

Jacc, and τavrg for different configurations of the proposed suboptimal estimator and
for different values of i representing the maximum number of iterations allowed
solving the respective NLP, averaged over 100 simulations. For suboptimal MHE
with N = 3 and T = 5, we see that performing only one iteration of the optimizer
is already sufficient to significantly improve the estimation results of the auxiliary
observer (achieving a reduction of the SSE by ≈ 90 %). Moreover, we observe that
i = 3 iterations are sufficient to provide estimation results that are close to optimal
MHE (that is, where we consider optimal solutions of the NLP), while saving ≈ 40 %
of the corresponding computation time. Consequently, the influence of the different
candidate solutions (and warm starts) also becomes negligible for i ≥ 3 iterations.
To investigate the influence of longer estimation horizons, we also consider subop-
timal MHE with N = 10 and T = 15. Here, we can observe qualitatively the same
behavior as before; however, the estimation results for i = 0, 1 are slightly worse
compared to the case where N = 3 and T = 5. This is due to the fact for T = 15,
the (initially poorly performing) auxiliary observer is re-initialized later than in the
case of T = 5, hence yielding a worse warm start trajectory and therefore requir-
ing more iterations to improve. For i ≥ 2, better performance is then achieved
compared to the case where N = 3 (in terms of SSE and Jacc), however, requiring
longer computation times as expected. Overall, this example shows that perform-
ing only very few iterations of the optimizer already leads to significantly improved
estimation results compared to the auxiliary observer while reducing computation
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times compared to optimal MHE, demonstrating the effectiveness of the proposed
suboptimal MHE framework.

Comparison with fast MHE schemes from the literature

We compare the proposed suboptimal estimator to the fast MHE schemes from
[Küh+11] and [WVD14], which are referred to as f-MHE1 and f-MHE2 in the re-
mainder of this section, respectively. Both schemes rely on the generalized Gauss-
Newton (GGN) algorithm and employ a quadratic cost function in filtering form,
that is, where the estimation horizon at a given time t includes the most recent
measurement y(t). For a meaningful comparison, we implement the proposed sub-
optimal MHE scheme in a similar fashion, that is, in its filtering form5 and using the
GGN algorithm (with Lagrange relaxation, compare [WVD14]) for approximately
solving the optimization problem. We consider the candidate solution based on the
nominal system trajectory (4.56) and on the projected observer trajectory (4.64)
and denote the resulting estimators as s-MHE1 and s-MHE2, respectively. For each
estimator, we choose N = 3 (and T = 5 for s-MHE1,2), parameterize each cost
function according to the choices from the previous section based on the i-IOSS
Lyapunov function U , construct the respective warm start using the previously ob-
tained (suboptimal) solution (compare Remark 4.3), and incorporate the constraint
set X using a simple active-set method [Jat00].
Table 4.4 compares the estimation results in terms of SSE and computation time τavrg
per sample, averaged over 100 simulations. Here, it can be seen that the estimation
results of s-MHE1,2 are generally more accurate (in terms of SSE) and also require
less computation time compared to the corresponding values in Table 4.3, which
results from the fact that we use the filtering (instead of prediction) form of MHE
and the GGN algorithm (instead of IPOPT), respectively. Moreover, performing
i ≥ 1 GGN iterations reveals that s-MHE1 and s-MHE2 perform slightly faster
than f-MHE1 and slower than f-MHE2, which was to be expected and is mainly
due to the respective design of the cost function. Specifically, s-MHE1,2 has a prior
weighting Γ involving constant parameters only, f-MHE1 has a time-varying prior
weighting where the parameters of Γ needs to be updated each time-step using a
QR decomposition [Küh+11], and f-MHE2 has no prior weighting and penalizes
solely the fitting error [WVD14]. This is also the reason why f-MHE2 performs best
(i.e., achieves the lowest SSE) for i = 1, as the prior weighting prevents the other
estimators from converging as similarly fast. However, for i ≥ 2, the prior weighting
is able to improve the estimation results, which generally yields a lower SSE for
s-MHE1,2 and f-MHE1 compared to f-MHE2.
Overall, this example shows that the considered suboptimal/fast estimation methods
perform very similarly, both in terms of their accuracy (SSE) and their computation
times (τavrg). However, our proposed suboptimal MHE framework is more flexible

5Note that the results derived in Sections 4.2.2–4.2.5 for the prediction form of MHE (i.e., without
incorporating the current measurement y(t) at time t) can be straightforwardly extended to
the filtering form of MHE, compare also [RMD20, Sec. 4], [AR19b, Sec. 3], and the discussion
in Section 3.1.
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Table 4.4. Comparison of the estimation results of the proposed suboptimal (s-MHE1,2)
and fast MHE schemes (f-MHE1,2) for different numbers of GGN iterations i.

i
s-MHE1 s-MHE2 f-MHE1 f-MHE2

SSE τavrg SSE τavrg SSE τavrg SSE τavrg

0 17.70 0.07 14.22 0.08 135.12 0.05 135.12 0.01
1 3.02 0.51 2.98 0.51 2.23 0.52 1.63 0.43
2 0.73 0.87 0.73 0.87 0.77 0.92 0.79 0.80
3 0.67 1.27 0.68 1.28 0.41 1.35 0.54 1.20
4 0.28 1.62 0.25 1.63 0.27 1.72 0.42 1.56
Each value represents the average over 100 simulations of length tsim = 60; the average com-
putation time τavrg is in milliseconds (ms).

than that of [Küh+11; WVD14], as it is applicable to a larger class of nonlinear
detectable systems and allows for a completely free choice of optimization algorithm.
Moreover, we can provide robust stability guarantees independent of the horizon
length and the number of iterations performed; in contrast, fMHE1,2 provide either
no guarantees at all [Küh+11] or only for observable systems [WVD14], heavily
relying on the convergence properties of the GGN algorithm.

4.3. Optimizing observer trajectories

In the previous section, we have considered a classical MHE formulation that op-
timizes over trajectories of the system (4.1). Now, we consider a modified MHE
problem that directly optimizes over trajectories of the observer (4.5), which is spec-
ified in Section 4.3.1. This formulation allows for a more direct stability analysis in
Section 4.3.2, ultimately leading to tighter error bounds. Moreover, the numerical
example in Section 4.3.3 shows that the resulting suboptimal MHE scheme can yield
improved convergence behavior in applications if the auxiliary observer is rather ag-
gressive.

4.3.1. Suboptimal MHE design

Given some finite estimation horizon N ∈ I≥0 and a time t ∈ I≥0, we consider the
following modified MHE problem:

min
x̂t

J(x̂t, ŷt, t) (4.72a)

s.t. x̂t(j + 1) = g(x̂t(j), ut(j), yt(j)), j ∈ I[0,Nt−1], (4.72b)
ŷt(j) = hn(x̂t(j), ut(j)), j ∈ I[0,Nt−1], (4.72c)
x̂t(j) ∈ O, j ∈ I[0,Nt], (4.72d)

where Nt = min{t, N}, ut is defined in (4.9) and corresponds to the truncated input
sequence applied to the system (4.1), g in (4.72b) corresponds to the dynamics of
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the auxiliary observer from (4.5) evolving in the set O, and hn in (4.72c) represents
the nominal output equation of the system in (4.1). The decision variables of the
optimization problem in (4.72) are the elements of the estimated state sequence x̂t =
{x̂t(j)}Nt

j=0, which (uniquely) defines a sequence of output estimates ŷt = {ŷt(j)}Nt−1
j=0

under (4.72c). The cost function J in (4.72a) is defined as

J(x̂t, ŷt, t) = 2|x̂t(0) − x̄(t−Nt)|2W + λmin(P o)
2L2

hλmax(G)

Nt−1∑
j=0

ηNt−j
o |ŷt(j) − yt(j)|2G, (4.73)

where x̄(t − Nt) is the prior estimate defined below, yt is defined in (4.10) and
corresponds to the truncated output sequence obtained from the system (4.1), the
parameters ηo and P o are from the i-ISS Lyapunov function Vo (Assumption 4.2),
and Lh refers to the Lipschitz property of h (Assumption 4.1). The parametersG ⪰ 0
and W ≻ 0 are weighting matrices that can be tuned arbitrarily; their respective
influence on the theoretical properties of the resulting estimator is discussed in detail
in Remark 4.13 below.

Remark 4.10 (Discounting). The cost function in (4.73) involves a discounted stage
cost using ηo as discount factor. This could be generalized by replacing ηo in (4.73)
with a tuning parameter η̄ satisfying 0 < η̄ < 1. However, note that in contrast to
Section 4.2, we aim to establish a contraction over the estimation horizon from time
t−N to time t and hence require a discounted cost with η̄ < 1, compare Remark 4.2
(but without requiring a lower bound on η̄ apart from zero, as we do not invoke
i-IOSS here). Adopting the key ideas from Section 4.2, it is possible to modify the
scheme and corresponding analysis to allow for an arbitrary tuning parameter η̄ > 0,
see Remark 4.15 below for details. However, we emphasize that choosing η̄ ≥ 1 would
deteriorate the theoretical guarantees.

Remark 4.11 (Optimizing observer trajectories). In contrast to all other MHE for-
mulations considered in this thesis and also to most of the literature on nonlinear
MHE for uncertain systems (see, e.g., [RMD20; KM23; AR21; Küh+11; Hu24]), the
MHE scheme in (4.72) does not optimize over process disturbances d̂t(j), j ∈ I[0,Nt−1]
(in contrast to, e.g., the NLP in (4.11)). Instead, we optimize over trajectories of
the auxiliary observer by employing its dynamics in (4.72b), avoiding the need for
an additional disturbance input. This is computationally beneficial as it drastically
reduces the number of decision variables, compare the simulation results in Sec-
tion 4.3.3. Similar MHE formulations were previously considered in [SJF10; SJ14;
Suw+14; WK17]. In Section 4.3.2 below, we show that this direct coupling between
MHE and the auxiliary observer allows for using the corresponding i-ISS Lyapunov
function Vo (Assumption 4.2) as N-step Lyapunov function for (suboptimal) MHE.
A direct consequence of this formulation is that the estimated states x̂t(j), j ∈
I[0,Nt−1] naturally live in the domain of the auxiliary observer (that is, the set O),
which we explicitly invoke in (4.72d). Now consider the case where the true system
state x(t) is known to evolve in some set X (e.g., due to the physical nature of the
system (4.22), see the discussion below (4.3) and compare also Section 3.1). As we
rely on rather conventional state observers in (4.5), we generally have that O ⊇ X ,
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as there is no guarantee that the observer provides physically plausible state estimates
for all times, compare the discussion in Section 4.2.5. To still use the additional
knowledge about X in the MHE formulation to improve its estimation performance,
one could suitably re-design the auxiliary observer as suggested in [Ast+21] (to en-
sure that O = X ) or use additional projections as in Section 4.2.5. However, it
should be noted that such projections lead to a worse bound on the corresponding
estimation error, compare Definition 4.3.

Instead of solving the NLP in (4.72) to optimality, we consider the following subop-
timal estimator.

Definition 4.4 (Suboptimal estimator). Let t ∈ I≥0, N ∈ I≥0, some prior esti-
mate x̄(t − Nt), and the input-output sequences ut and yt in (4.9) and (4.10) be
given. Furthermore, let x̃t ∈ ONt+1 denote a feasible candidate solution to the MHE
problem (4.72) with the corresponding output sequence ỹt. Then, the corresponding
suboptimal solution of (4.72) is defined as any sequence x̂t ∈ ONt+1 that satisfies
(i) the MHE constraints (4.72b)-(4.72d) and (ii) the cost decrease condition

J(x̂t, ŷt, t) ≤ J(x̃t, ỹt, t). (4.74)

The (suboptimal) state estimate at time t ∈ I≥0 is then defined as x̂(t) = x̂t(Nt).

We consider the following candidate solution x̃t ∈ ONt+1:

x̃t(j + 1) = g(x̃t(j), ut(j), yt(j)), j ∈ I[0,Nt−1], (4.75a)

x̃t(0) =
x̂(t−N), t ∈ I≥N ,

χ̂, t ∈ I[0,N−1].
(4.75b)

where ut and yt are defined in (4.9) and (4.10), respectively, and correspond to the
input-output sequences obtained from the system (4.1) in the current estimation
horizon. The corresponding candidate output sequence is generated from (4.72c)
and denoted as ỹt = {ỹt(j)}Nt−1

j=0 .
Note that the candidate solution in (4.75) does not restrict the warm start of the
particular algorithm used to (approximately) solve the NLP in (4.72), compare also
Remark 4.3. Here, a practical choice is, e.g., the observer trajectory generated
by (4.5) initialized using the most recent suboptimal solution (specifically, the ele-
ment x̂t−1(1)) and driven by the current input-output sequences ut and yt. We also
want to emphasize that the candidate solution in (4.75) is much simpler in contrast
to the ones we constructed in Section 4.2, where the auxiliary observer needed to be
re-initialized, re-simulated, and transformed into a trajectory of the system (4.1).
It remains to define the prior estimate x̄(t−Nt) used in the cost function in (4.73).
Here, we choose the standard filtering prior

x̄(t−Nt) =
x̂(t−N), t ∈ I≥N

χ̂, t ∈ I[0,N−1],
(4.76)
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where x̂(t−N) is the suboptimal estimate obtained N steps in the past and χ̂ corre-
sponds to the a priori guess of the unknown initial condition χ of the system (4.1).
In the next section, we derive practical conditions for robust stability of suboptimal
MHE, simply by exploiting the direct coupling between the MHE problem in (4.72)
and the auxiliary observer in (4.5) satisfying Assumption 4.2.

4.3.2. Stability analysis

We first require an auxiliary result that establishes a bound on the cost of the
candidate solution (4.75).

Lemma 4.5. Let Assumptions 4.1 and 4.2 hold and χ̂ ∈ O. Let N ∈ I≥0 be arbitrary.
Then, the cost function (4.73) evaluated at the candidate solution (4.75) satisfies

J(x̃t, ỹt, t) ≤ Ntη
Nt
o Vo(x̄(t−Nt), x(t−Nt)) +Nt

Nt∑
j=1

ηj−1
o |d(t− j)|2Qo

+
(
ηo
λmin(P1)
λmin(Ro)

+Nt

)
Nt∑

j=1
ηj−1

o |v(t− j)|2Ro (4.77)

for all t ∈ I≥0.

Proof. First, note that the candidate solution (4.75) is feasible for the problem
in (4.72), which follows from the definition of the observer in (4.5) and the fact that
χ̂ ∈ O. From the cost function (4.73) and using that x̃t(0) = x̄(t − Nt) by (4.75b)
and the definition of the prior estimate in (4.76), it follows that

J(x̃t, ỹt, t) ≤ λmin(P1)
2L2

hλmax(G)

Nt−1∑
j=0

ηNt−j
o |ỹt(j) − yt(j)|2G. (4.78)

The output equation (4.1b), Assumption 4.1, and the definitions of the true state
and measurement sequences xt and vt from (4.23) and (4.25) imply that

|ỹt(j) − yt(j)|2G ≤ λmax(G)|h(x̃t(j), ut(j), 0) − h(xt(j), ut(j), vt(j))|2

≤ λmax(G)2L2
h(|x̃t(j) − xt(j)|2 + |vt(j)|2)

≤ 2L2
h

(
λmax(G)
λmin(P1)

|x̃t(j) − xt(j)|2P1 + λmax(G)
λmin(Ro)

|vt(j)|2Ro

)
. (4.79)

By combining (4.78), (4.79), and the lower bound on Vo from (4.6a), we therefore
obtain

J(x̃t, ỹt, t) ≤
Nt−1∑
j=0

ηNt−j
o

(
Vo(x̃t(j), xt(j)) + λmin(P1)

λmin(Ro)
|vt(j)|2Ro

)
. (4.80)

Since x̃t constitutes a state trajectory of the observer (4.5) via (4.72d), we can invoke
Assumption 4.2 and apply the dissipation inequality (4.6b) for each j ∈ I[0,Nt−1] for
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j times. This leads to

ηNt−j
o Vo(x̃t(j), xt(j)) ≤ ηNt−j

o

ηj
oVo(x̃t(0), xt(0)) +

j−1∑
i=0

ηj−i−1
o

(
|dt(i)|2Qo + |vt(i)|2Ro

)
for each j ∈ I[0,Nt−1]. Summing up over all j ∈ I[0,Nt−1] yields

Nt−1∑
j=0

ηNt−j
o Vo(x̃t(j), xt(j)) ≤ Ntη

Nt
o Vo(x̃t(0), xt(0))

+Nt

Nt−1∑
j=0

ηNt−j−1
o

(
|dt(j)|2Qo + |vt(j)|2Ro

)
, (4.81)

where dt is from (4.24). Combining (4.80) and (4.81) yields

J(x̃t, ỹt, t) ≤ Ntη
Nt
o Vo(x̃t(0), xt(0)) +Nt

Nt∑
j=1

ηNt−j−1
o |dt(j)|2Qo

+
(
ηo
λmin(P1)
λmin(Ro)

+Nt

)
Nt−1∑
j=0

ηNt−j−1
o |vt(j)|2Ro . (4.82)

By recalling that x̃t(0) = x̄(t − Nt) by (4.75b) and (4.76) and the definitions of
the sequences xt, dt, vt, we observe that (4.82) is equivalent to (4.77), which hence
concludes this proof.

In the following, we show that Vo is an N -step Lyapunov function for suboptimal
MHE.

Theorem 4.5. Let Assumptions 4.1 and 4.2 hold and χ̂ ∈ O. Let N ∈ I≥0 be
arbitrary. Then, the suboptimal state estimate x̂(t) satisfies

Vo(x̂(t), x(t)) ≤ γ1(Nt)Vo(x̄(t−Nt), x(t−Nt))

+
Nt∑

j=1
ηj−1

o

(
γ2(Nt)|d(t− j)|2Qo + γ3(Nt)|v(t− j)|2Ro

)
(4.83)

for all t ∈ I≥0 and any N ∈ I≥0, where

γ1(k, r, s) :=2λmax(P o, P o)ηs
o+λmax(P o,W )kηr+s

o , (4.84a)
γ2(k, r) :=1 + λmax(P o,W )kηr

o, (4.84b)

γ3(k, r) :=1 + λmax(P o,W )
(
ηo
λmin(P1)
λmin(Ro)

+ k

)
ηr

o (4.84c)

with6 γ1(r) := γ1(r, r, r) and γi(r) := γi(r, r), i = {2, 3}.

6We define the functions γi in (4.84) as functions of three (two) separate variables, since this will be
convenient for various extensions and adaptations discussed in Remark 4.15 and Section 4.3.3.
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Proof. At any t ∈ I≥0, the constraint in (4.72b) ensures that the estimated sub-
optimal trajectory x̂t = {x̂t(j)}Nt

j=0 is a trajectory of the observer (4.5), which by
Assumption 4.2 admits the i-ISS Lyapunov function Vo. Hence, we can apply the
dissipation inequality (4.6b) for Nt times, which leads to

Vo(x̂(t), x(t)) = Vo(x̂t(Nt), xt(Nt))

≤ ηNt
o Vo(x̂t(0), xt(0)) +

Nt∑
j=1

ηj−1
o

(
|d(t− j)|2Qo + |v(t− j)|2Ro

)
, (4.85)

where xt corresponds to the truncated state sequence as defined in (4.23). Using
(4.6a) with Cauchy-Schwarz and Young’s inequality, we further have that

Vo(x̂t(0), xt(0)) ≤ |x̂t(0) − x̄(t−Nt)|2P o

≤ 2|x̂t(0) − x̄(t−Nt)|2P o
+ 2|x̄(t−Nt) − xt(0)|2

P o
. (4.86)

The second term of the right-hand side in (4.86) can be bounded by exploiting (4.6a)
according to

2|x̄(t−Nt) − xt(0)|2
P o

≤ 2λmax(P o, P o)Vo(x̄(t−Nt), xt(0)). (4.87)

Using a similar reasoning, the first term of the right-hand side in (4.86) satisfies

2|x̂t(0) − x̄(t−Nt)|2P o
≤ λmax(P o,W )J(x̂t, ŷt, t), (4.88)

which follows from the definition (and non-negativity) of the cost function (4.73).
In combination, from (4.85) with (4.86)–(4.88), we obtain

Vo(x̂(t), x(t)) ≤ λmax(P o,W )ηNt
o J(x̂t, ŷt, t) + 2λmax(P o, P o)ηNt

o Vo(x̄(t−Nt), xt(0))

+
Nt∑

j=1
ηj−1

o

(
|d(t− j)|2Qo + |v(t− j)|2Ro

)
. (4.89)

Now recall that
J(x̂t, ŷt, t) ≤ J(x̃t, ỹt, t) (4.90)

due to (4.74). Consequently, from (4.89) with (4.90) and Lemma 4.5, we ob-
tain (4.83), which hence concludes this proof.

Provided that N ∈ I≥0 is chosen such that

ρN := γ1(N) < 1 (4.91)

holds, Theorem 4.5 directly implies that

Vo(x̂(t), x(t)) ≤ ρNVo(x̂(t−N), x(t−N))

+
N∑

j=1
ηj−1

o

(
γ2(N)|d(t− j)|2Qo + γ3(N)|v(t− j)|2Ro

)
(4.92)

for t ∈ I≥N (recall the definition of the prior estimate in (4.76)). Consequently, the
i-ISS Lyapunov function Vo characterizing robust stability of the auxiliary observer
is an N -step ISS-like Lyapunov function for robust stability of suboptimal MHE.
Some remarks are in order.
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Remark 4.12 (Condition on the horizon length). By standard properties of the expo-
nential function, one can easily verify specific properties of γ1 : R≥0 → R≥0 on the
open interval [0,∞)—namely, that γ1 is continuous, has one (global) maximum, and
limN→∞ γ1(N) = 0. Consequently, there always exists some Nmin ∈ I≥0 sufficiently
large such that (4.91) holds for all N ∈ I≥Nmin. In practice, a suitable value of N
can be easily obtained by evaluating the condition in (4.91) numerically.

Remark 4.13 (Parameterization of the cost function). The matrices W and G in used
in the cost function in (4.73) are arbitrary tuning parameters (satisfying W ≻ 0 and
G ⪰ 0). The choice of G has no impact on the theoretical guarantees (note that G
does not appear in (4.83)), since the stage cost is normalized by its largest eigenvalue
λmax(G). Consequently, G can be used to scale the output estimates differently in
case p > 1. In contrast, W has a direct influence on all functions γ1, γ2, γ3 in (4.84)
via the generalized eigenvalue λmax(P o,W ). This can be exploited to adjust the degree
of confidence in the observer’s estimates by specifying how much the estimated trajec-
tory x̂t = {x̂t(j)}Nt

j=0 may (λmax(P o,W ) ≫ 1) or may not (λmax(P o,W ) ≪ 1) deviate
from the observer trajectory initialized at x̂(t−Nt) and driven by the current input-
output sequences ut and yt from (4.9) and (4.10). For small values of λmax(P o,W ),
the minimum horizon length is dominated by the first summand in (4.84a), and the
functions γ2 and γ3 in (4.84b) and (4.84c) approach unity; consequently, the dis-
turbance gains of suboptimal MHE appearing in (4.83) become closer to that of the
auxiliary observer given in (4.6b) (and converge to them for λmax(P o,W ) → 0).
Conversely, the further one allows to deviate from the stabilizing observer by choos-
ing large values of λmax(P o,W ) in (4.84), the worse the guarantees become and the
larger the horizons must be chosen (which is also intuitive, since our design is mainly
aimed at preserving the stability properties of the auxiliary observer). On the other
hand, this choice typically leads to good results in practice, since the estimate from
the auxiliary observer can (potentially significantly) be improved with only a few
iterations, compare also the simulation example in Section 4.3.3.

Remark 4.14 (Asymptotic behavior for large N). Similar properties as discussed
in Remark 4.12 for the function γ1 also apply to γ2 and γ3. In particular, both
of these functions are monotonically decreasing in N for N large enough, and
limN→∞ γ2(N) = limN→∞ γ3(N) = 1. Together with the fact that limN→∞ γ1(N) = 0
(see Remark 4.12), this implies the appealing theoretical property that for N → ∞,
the bound from Theorem 4.5 converges to the bound given by the i-ISS Lyapunov
function Vo in (4.6), regardless of how the cost function (4.73) is parameterized.
This is generally not the case for the suboptimal MHE schemes presented in Sec-
tion 4.2, where the guarantees for suboptimal MHE are strictly worse than those
from the auxiliary observer.

Remark 4.15 (Alternative candidate solution). For N ∈ I≥0 arbitrarily fixed, we
could also apply the re-initialization strategy that we suggested in Section 4.2 (see
(4.16) and (4.17) above) and derive a T -step Lyapunov function for a sufficiently
large T ∈ I≥N , thus ensuring robust stability of suboptimal MHE for an arbitrary
horizon length N ∈ I≥0. However, the candidate solution becomes more intricate.
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In particular, at each t ∈ I≥0, we need to re-initialize the auxiliary observer Tt =
min{t, T} steps in the past using zt(0) = x̂(t−Tt) and perform a forward simulation
for Tt steps to obtain the candidate solution x̃t(j) = zt(Tt − Nt + j), j ∈ I[0,Nt]; in
addition, the prior estimate x̄(t−Nt) needs to be replaced by zt(Tt −Nt) as in (4.18),
see Section 4.2 for more details. Then, by suitably modifying the proofs of Lemma 4.5
and Theorem 4.5, we can derive (4.83)–(4.84) with functions γ1(Nt, Nt, Tt), γ2(Nt),
γ3(Nt), where 1 is replaced by 2λmax(P o, P o) in (4.84b)–(4.84c). Condition (4.91)
(with γ1(N) replaced by γ1(N,N, T )) can then be easily solved for a sufficiently large
value of T . Alternatively, one may also omit the re-initialization step of the auxiliary
observer and use T = t instead, which considerably simplifies the construction of
the candidate solution. In this case, the property in (4.83) directly implies RGES
of suboptimal MHE, compare Remark 4.6 and see also the simulation example in
Section 4.3.3.

Remark 4.16 (Filtering form of MHE). The MHE problem in (4.72) neglects the
current measurement y(t) and thus corresponds to the prediction form of MHE.
However, we want to emphasize that our results can be easily extended to the fil-
tering form of MHE (i.e., such that the cost function in (4.73) includes the term
|ŷt(Nt) − yt(Nt)|2G), albeit with a (significantly) more cumbersome notation, com-
pare also [RMD20, Sec. 4.2]. In particular, by suitably adapting the proof of Theo-
rem 4.5, we can derive (4.83) with the functions γ1(Nt), γ2(Nt), and γ3(Nt) replaced
by γ1(Nt + 1, Nt, Nt), γ2(Nt + 1, Nt), and γ3(Nt + 1, Nt)/ηo, respectively.

From Theorem 4.5, we can straightforwardly deduce RGES of suboptimal MHE as
shown in the following corollary.

Corollary 4.2. Suppose the conditions of Theorem 4.5 are satisfied. Let N ∈ I≥0
be such that the condition in (4.91) holds. Then, the suboptimal moving horizon
estimator from Definition 4.4 is RGES.

Proof. We start by defining c1 := γ1(N, 0, 0), c2 := γ2(N, 0), and c3 := γ3(N, 0) such
that γ1(k, r, s) ≤ c1η

s
o, γ2(k, r) ≤ c2, γ3(k, r) ≤ c3 for all k ∈ [0, N ] and all r, s ≥ 0.

Due to definition of the prior in (4.76), Theorem 4.5 implies that

Vo(x̂(t), x(t)) ≤ c1η
t
oVo(χ̂, χ) +

t∑
j=1

ηj−1
o

(
c2|d(t− j)|2Qo + c3|v(t− j)|2Ro

)
(4.93)

for all t ∈ I[0,N−1]. For t ∈ I≥N , on the other hand, Theorem 4.5 implies (by
satisfaction of (4.91)) the Lyapunov decrease property in (4.92), which leads to

Vo(x̂(t), x(t)) ≤ ρNVo(x̂(t−N), x(t−N))

+
N∑

j=1
ηj−1

o

(
c2|d(t− j)|2Qo + c3|v(t− j)|2Ro

)
. (4.94)

The combination of (4.93) and (4.94) together with the fact that ηo ≤ ρ (which is a
simple consequence of (4.91)) yields

Vo(x̂(t), x(t)) ≤ c1ρ
tVo(χ̂, χ) +

t∑
j=1

ρj−1
(
c2|d(t− j)|2Qo + c3|v(t− j)|2Ro

)
(4.95)
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for all t ∈ I≥0 (compare the proof of Theorem 4.1). By applying the uniform bound-
edness condition of Vo from (4.6a) and taking the square root, we can straight-
forwardly transform (4.95) into a sum-based formulation of RGES. By Proposi-
tion 4.1, this is equivalent to RGES in the sense of Definition 4.1, which concludes
this proof.

4.3.3. Numerical example

To illustrate our results, we consider the batch reactor example from Section 3.4.1,
which corresponds to the dynamical system

x+
1 = x1 + t∆(−2k1x

2
1 + 2k2x2) + d1, (4.96a)

x+
2 = x2 + t∆(k1x

2
1 − k2x2) + d2, (4.96b)

y = x1 + x2 + v (4.96c)

with parameters k1 = 0.16, k2 = 0.0064, and t∆ = 0.1, see Section 3.4.1 for more
details. We consider the initial condition χ = [3, 1]⊤ and the poor a priori guess
χ̂0 = [0.1, 4.5]⊤. The disturbances d ∈ R2 and v ∈ R are modeled as uniformly
distributed random variables sampled from {d ∈ R2 : |di| ≤ 2 · 10−3, i = {1, 2}} and
{v ∈ R : |v| ≤ 10−2} during the simulation.
In the following, we consider the proposed suboptimal MHE scheme from Sec-
tion 4.3.1, where we first analyze the influence of the weighting matrix W ; then,
we compare the estimation results to the suboptimal scheme from Section 4.2 (more
specifically, Section 4.2.3) and two fast MHE schemes from the literature.
In order to apply suboptimal MHE, we first have to design an auxiliary observer
for the system in (4.96). To this end, we consider a simple Luenberger observer in
the form of (4.71) and design the constant observer gain K by following the same
procedure as in Section 4.2.6. Consequently, Assumption 4.2 can be verified on
O = {z ∈ Rn : 0.1 ≤ z1 ≤ 6} using a quadratic Lyapunov function Vo(z, x) = |z−x|2P
and the parameters ηo = 0.955,

K =
[

7.999
−9.997

]
, P =

[
1.537 1.380
1.380 1.254

]
, Qo =

[
103 0
0 103

]
, Ro = 100,

leading to P o = P o = P in (4.6a).
As additional benchmark for suboptimal MHE, we consider the standard (i.e.,
fully optimized with respect to the system dynamics) MHE formulation presented
in [Sch+23, Sec. III]. This essentially corresponds to the scheme outlined in Sec-
tion 3.1 using the discounted cost function from (4.12) with η̄ = ηs and the prior
weighting and stage cost from (4.13) and (4.14), respectively. For the validity of
the theoretical guarantees from [Sch+23, Thm. 1], the cost function parameters ηs,
P s, Qs, Rs, Gs are to be chosen according to an i-IOSS Lyapunov function U in
the sense of Assumption 4.3 (which is also required in the design of the suboptimal
MHE scheme from Section 4.2). To this end, we adapt Corollary 7.1 to our current
setup (with distinct process disturbances and measurement noise) and verify the



4. Suboptimality guarantees for real-time applications 111

corresponding LMI conditions on O, while imposing U(x1, x2) = Vo(z, x) for the
sake of comparability. The remaining parameters are ηs = 0.9545 and

P s = Po, Qs =
[
2 · 103 0

0 2 · 103

]
, Rs = 2 · 103, Gs = 200.

Suboptimal MHE with different prior weightings

In the following, we consider G = 1 and W = aP o in (4.73), where we select
a ∈ {102, 1, 10−3, 10−4} in order to illustrate the influence of the prior weighting
as theoretically analyzed in Remark 4.13. Moreover, we consider the filtering form
of MHE (which is generally beneficial in practical applications) and hence employ
the modifications from Remark 4.16. The respective minimum required horizon
lengths Nmin ensuring the contraction condition (4.91) are shown in the upper part
of Table 4.5. Here, we can observe that the value of a has a direct influence on
the value of Nmin, which is clear because the factor λmax(P o,W ) = 1/a appears in
the function γ̄1 in (4.84a) and hence in the contraction condition in (4.91), see also
Remark 4.13.
We simulate each suboptimal estimator and the benchmark MHE scheme in MAT-
LAB with CasADi [And+18] and the NLP solver IPOPT [WB05], where we select
N = Nmin so that valid theoretical guarantees7 are obtained in each case. Table 4.5
shows the SSE and the average computation time τavrg per sampling instant for
different numbers of solver iterations i. Here, we observe that small values of a are
required to improve the estimates from the Luenberger observer (which corresponds
to the case of i = 0 in Table 4.5). In line with Remark 4.13, this requires larger
horizons in order to satisfy condition (4.91). However, Table 4.5 indicates that the
choice of larger horizons only has a relatively small impact on the computation time.
This is in line with the simulation results reported in [Suw+14; WK17] and mainly
due to the formulation of the MHE problem in (4.72), which in particular avoids
the estimation of additional process disturbances (and thus the use of corresponding
decision variables) compared to classical MHE schemes, see, e.g., (4.11). Moreover,
we find that already i = 1 iteration is sufficient to significantly improve the estimates
of the auxiliary observer, while preserving its robustness guarantees and reducing
the computational complexity in terms of τavrg compared to the benchmark MHE
scheme by ≈ 66 %. In fact, Table 4.5 also shows that performing one iteration of the
optimizer yields estimation results that are close to the fully converged ones. The
reason why allowing more iterations sometimes leads to smaller computation times
in Table 4.5 can be attributed to the fact that this generally produces very accurate
(close to optimal) warm starts for the optimization problems, which accelerates the
optimization algorithm accordingly.

7Note that using a different (worse conditioned) matrix P allows for choosing a smaller horizon
length for the benchmark MHE scheme, compare Section 3.4.1.
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Table 4.5. Comparison of the estimation results of suboptimal MHE for different weighting
matrices W = aP o and different numbers of solver iterations i.

i
a = 102 a = 1 a = 10−3 a = 10−4

Nmin=16 Nmin=45 Nmin=128 Nmin=155
SSE τavrg SSE τavrg SSE τavrg SSE τavrg

0 42.90 2.30 42.90 2.50 42.90 2.86 42.85 2.97
1 42.83 3.09 42.47 3.34 3.49 3.53 1.11 3.61
2 42.85 3.14 42.48 3.41 3.49 4.13 1.09 3.45
3 42.93 3.14 42.52 3.40 3.46 4.05 1.12 3.36
∗ 42.98 3.14 42.53 3.40 3.50 4.10 1.12 3.40
Each value represents the average over 100 simulations of length tsim = 200; the average
computation time τavrg is in milliseconds (ms); asterisks represent fully converged optimization
problems; the benchmark MHE yields Nmin = 30 and achieves SSE = 0.5 with τavrg = 10.86 ms.

Comparison with fast MHE schemes from the literature

We compare the proposed suboptimal estimator (which we denote in following as
s-MHE1) to the suboptimal MHE scheme presented in Section 4.2 (s-MHE2) and
to the fast MHE schemes from [Küh+11] (f-MHE1) and [WVD14] (f-MHE2). For
comparison reasons, we fix the horizon length toN = 10, and thus, consider the mod-
ifications from Remark 4.15. Motivated by the findings from Table 4.5, we choose
W = 10−4P o and select T = t, which trivially ensures RGES of suboptimal MHE,
see Remark 4.15 (here, it turned out that the additional effort of re-initializing the
auxiliary observer was not worthwhile for this application example). For s-MHE2,
we consider the observer-based candidate solution from (4.46) and use the same cost
function as for the benchmark MHE (i.e., the discounted cost function from (4.12)–
(4.14) parameterized using the i-IOSS Lyapunov function U from above and with
η̄ = ηs). Here, we also select T = t to ensure valid theoretical guarantees, compare
Remark 4.6. The cost function for f-MHE1 is parameterized analogously, whereas
f-MHE2 does not allow for tuning, see [WVD14] for further details. Since f-MHE1
and f-MHE2 both rely on the GGN algorithm, we implement the suboptimal MHE
schemes s-MHE1 and s-MHE2 in a similar fashion, relying on a Lagrange relaxation
[WVD14]. To this end, we have to adapt the initial estimate to χ̂ = [2, 1.8]⊤, since
the GGN algorithm does not converge using the previously chosen initial estimate,
illustrating its local nature, compare [WVD14]. As additional comparison, we again
consider the benchmark MHE scheme from above, although the corresponding guar-
antees do not hold anymore since N = 10 < Nmin = 30.
Figure 4.3 shows the simulation results for all estimators under study, which reveals
an improved transient behavior of s-MHE1 compared to s-MHE2, the fast MHE
schemes f-MHE1 and f-MHE2, and the auxiliary observer. This is mainly due to the
fact that the auxiliary observer is rather aggressive and converges accordingly fast,
albeit being highly sensitive to noise and exhibiting significant oscillations. These
oscillations are efficiently reduced by the proposed suboptimal scheme s-MHE1 (as
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Figure 4.3. Estimation results for the proposed suboptimal MHE scheme under the mod-
ifications from Remark 4.15 (s-MHE1), suboptimal MHE from Section 4.2 (s-MHE2), and
the fast MHE schemes f-MHE1 [Küh+11] and f-MHE2 [WVD14] after performing i = 1
GGN iteration compared to the Luenberger observer and the (fully optimized) bench-
mark MHE using a fixed estimation horizon N = 10. Top: Real system state x1 and its
estimates x̂1 over time; bottom: estimation error in Lyapunov coordinates.
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Table 4.6. Average computation time τavrg per sample in milliseconds (ms) for the proposed
suboptimal scheme compared to similar methods from the literature.

s-MHE1 s-MHE2 f-MHE1 f-MHE2 benchmark
0.57 0.69 0.61 0.46 10.55

Each value represents the average over 100 simulations of length tsim = 80.

we use a small weighting matrix W ), while its fast convergence property could be
preserved. Moreover, the estimates are close to those of the benchmark MHE. In
contrast, the suboptimal/fast MHE schemes that optimize over system trajectories
converge much slower, which is due to the slower dynamics of the system compared
to the auxiliary observer. To achieve a faster convergence and improved transient
behavior, one would have to perform more than one GGN iteration per time step,
which is consistent with the simulation results obtained in Section 4.2.6. Further
simulations have shown that the use of auxiliary observers with significantly slower
error dynamics does not necessarily lead to advantages (in terms of the convergence
rate) of the proposed suboptimal MHE scheme over the methods from Section 4.2.
This is in line with intuition and suggests that the auxiliary observer should be
designed rather aggressively in applications to achieve fast convergence of subopti-
mal MHE.
From the computation times shown in Table 4.6, we observe that s-MHE1 is slightly
faster than s-MHE2 and f-MHE1, which is mainly due to the fact that less decision
variables are used in the optimization problem (4.72) compared to (4.11). Moreover,
s-MHE1 is slightly slower than f-MHE2, as the latter avoids the computation of a
prior weighting. Overall, the differences in the computation times are rather small,
and all suboptimal/fast MHE schemes under consideration are capable of reducing
the computational complexity (measured in terms of τavrg) compared to the bench-
mark MHE by ≈ 95 %. However, the proposed suboptimal MHE scheme is generally
much more flexible compared to f-MHE1 and f-MHE2 from [Küh+11] and [WVD14]
(in particular, since arbitrary optimization algorithms can be used) and has the
potential to converge faster than schemes relying on a standard MHE formulation
(such as SMHE2 and f-MHE1,2), while providing valid theoretical guarantees.

4.4. Summary

In this chapter, we presented several suboptimal MHE schemes that are applicable
to general nonlinear systems and established robust stability guarantees with respect
to unknown process disturbances and measurement noise. This is crucial in order
to ensure real-time applicability of MHE in cases where the optimization problem
cannot be solved to optimality within one fixed sampling interval. The suboptimal
schemes rely on an a priori known, robustly stable auxiliary observer, which is used
to construct a suitable candidate solution to the respective MHE problems. By
imposing that any suboptimal solution to the MHE problem achieves at most the
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same cost, the proposed suboptimal estimators inherit the stability properties of the
auxiliary observer while benefiting from the performance of numerical optimizers.
Here, we considered two conceptually different MHE formulations: first, a rather
classical one that optimizes over trajectories of the system, and second, a modified
version that optimizes directly over trajectories of the auxiliary observer.
The first MHE formulation allows for the use of a standard least squares cost func-
tion (with or without additional discounting), which is typically chosen in practical
applications. In this context, we considered two different candidate solutions; one is
applicable to general nonlinear systems, the other requires a certain structure of the
system and the observer, but provides qualitatively better theoretical guarantees
(in particular, disturbance gains that do not deteriorate with increasing estimation
horizons). Moreover, we suitably modified the candidate solutions to account for
the practically relevant case where the auxiliary observer may violate the MHE
constraints. We showed that the i-IOSS Lyapunov function characterizing the de-
tectability of the underlying nonlinear system is a Lyapunov function for suboptimal
MHE, from which robust stability can be directly inferred. In contrast to most of
the related literature, the derived robustness guarantees are valid independent of
(i) the horizon length; (ii) the chosen optimization algorithm; (iii) the number of
solver iterations performed at each time step (including zero).
The second MHE formulation (which directly optimizes over trajectories of the aux-
iliary observer) can further improve the estimation results, both from a theoretical
and a practical point of view. Since the corresponding suboptimal MHE scheme is
even stronger connected to the auxiliary observer, the theoretical analysis is more
direct, ultimately leading to tighter error bounds. Specifically, we show that the
Lyapunov function characterizing robust stability of the auxiliary observer is also
a Lyapunov function for suboptimal MHE under a suitable choice of the horizon
length. Consequently, the derived guarantees are independent of the optimization
algorithm, hold for an arbitrary number of solver iterations (including zero), improve
as the horizon length increases, and asymptotically approach those from the auxil-
iary observer (which is the best possible bound). However, in contrast to classical
MHE formulations optimizing over system trajectories, it is not directly possible to
consider state constraints in the MHE problem if the auxiliary observer does not
naturally comply with them, see Remark 4.11 and compare also Section 4.2.5.
The simulation examples showed that both MHE formulations are very effective,
especially in the case of poor transient behavior of the auxiliary observer. Moreover,
with only a few iterations of the optimizer, we were able to significantly improve the
estimates of the auxiliary observer and achieve an overall estimation performance
close to that obtained with standard (optimal) MHE, while significantly reducing
the required computation times.





5. Joint state and parameter
estimation

In this chapter, we address the case where the dynamical model of a system to be
estimated suffers from additional parametric uncertainties. To this end, we propose
and analyze MHE schemes for joint state and parameter estimation that are appli-
cable to general nonlinear systems. Here, our main concern is to avoid the restrictive
assumption of a uniform PE condition for the parameters (compare the discussion
in Section 1.2.4) and instead consider the practically relevant case where insufficient
excitation may occur frequently and unpredictably during operation. Here, the ba-
sic idea is to use online information about the current excitation of the parameters
and to adjust the corresponding regularization term in the cost function accordingly.
This allows us to establish theoretical guarantees for the state and parameter esti-
mation error that are valid for all times, even if the parameters are never or only
rarely excited.
In Section 5.1, we introduce the general problem setup. In Section 5.2, we present
and analyze an MHE scheme for joint state and parameter estimation, where we first
restrict ourselves to the special case of constant parameters. This will be relaxed
in Section 5.3, where we generalize the proposed MHE framework to time-varying
parameters. Our results are complemented by the verification methods developed
in Section 7.2, which provide practical tools for online monitoring PE properties of
general nonlinear systems.
Disclosure: The following chapter is based upon and in parts literally taken from
our previous publications [SM23b] and [SM24a]. A detailed description of the con-
tributions of each author is given in Appendix A.

5.1. Setup

We consider discrete-time systems in the form of (3.1) with additional parametric
dependency, that is,

x(t+ 1) = f(x(t), u(t), w(t), p(t)), x(0) = χ, (5.1a)
p(t+ 1) = g(p(t), u(t), w(t)), p(0) = ξ, (5.1b)

y(t) = h(x(t), u(t), w(t), p(t)), (5.1c)

where t ∈ I≥0 is the discrete time, x(t) ∈ Rn is the state at time t, p(t) ∈ Ro is the
unknown (generally time-varying) parameter, χ ∈ Rn and ξ ∈ Ro are the correspond-
ing initial conditions, y(t) ∈ Rp is the (noisy) output measurement, u(t) ∈ Rm is a
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known input (e.g., the control input), and w(t) ∈ Rq is an unknown generalized dis-
turbance input representing both process disturbances and measurement noise. The
nonlinear continuous functions f : Rn×Rm×Rq×Ro → Rn, g : ×Ro×Rm×Rq → Ro,
and h : Rn × Rm × Rq × Ro → Rp represent the system dynamics, the parameter
dynamics, and the output equation, respectively.
The system description (5.1) obviously covers standard setups in the context of
parameter estimation:

1. Constant parameters p(t) = p, t ∈ I≥0 for some unknown constant vector p,
where g(p, u, w) = p in (5.1b). This corresponds to the special case considered
in most of the theory on system identification and online parameter estimation,
compare, for example, [Lju99; IS12]. This case is addressed in Section 5.2.

2. Time-varying parameters p(t), where g(p, u, w) can be used to model known
internal dynamics of p, the variable u can represent the influence of known
inputs (e.g. explicit dependence of p on time) and the input w can represent,
e.g., an unknown drift. We consider the case of time-varying parameters in
Section 5.3. Note that this covers the important special case of

g(p, u, w) = p+Bpw (5.2)

for some matrix Bp, where the term Bpw corresponds to an unknown input.
In the following, we assume that the states x(t) are uniformly detectable (i-IOSS)
and the parameters p(t) are non-uniformly observable (in the sense that observability
depends on the excitation of the system and may be absent during operation). Here,
we want to emphasize that the distinction between states and parameters is rather
artificial, as discussed in the following remark.

Remark 5.1 (Distinction between states and parameters). Note that the separation
between states and parameters in the system description in (5.1) is rather for ease
of presentation and may not necessarily correspond to the physical understanding
of the model. In general, the variable x can represent all time-varying quantities
of a (possibly extended) system that are uniformly detectable, and p represents all
quantities that are non-uniformly observable. This is particularly relevant for sys-
tems in which the observability of certain states depends on the excitation (which
can then be described by (5.1b)), or for systems in which certain parameters prove
to be uniformly detectable (which can then be described by (5.1a)).

In the following, we assume that the unknown true system trajectories satisfy

(x(t), u(t), w(t), p(t)) ∈ Z, t ∈ I≥0, (5.3)

where

Z := {(x, u, w, p) ∈ X × U × W × P :
f(x, u, w, p) ∈ X , g(p, u, w) ∈ P , h(x, u, w, p) ∈ Y}

and X ⊆ Rn, P ⊆ Ro, U ⊆ Rm, W ⊆ Rq, and Y ⊆ Rp are some known closed sets.
The set Z can be used to incorporate additional information about the physical
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domain of the real system trajectories in the estimation scheme, which can often
significantly improve the estimation results, compare [RMD20, Sec. 4.4] and see
Section 3.1 for further details. Such constraints typically arise from the physical
nature of the system, e.g., non-negativity of partial pressures, mechanically imposed
limits, or known parameter ranges. If no such information is available, they can
simply be chosen as X = Rn, P = Ro, U = Rm, W = Rq, Y = Rp.
The overall goal is to compute at each time t ∈ I≥0 the estimates x̂(t) and p̂(t) of
the true unknown state x(t) and parameter p(t) using some given a priori estimates
χ̂ and ξ̂ and the past measured input-output sequence {(u(j), y(j))}t−1

j=0. To ensure
robust estimation under disturbances and noise, we require suitable detectability
and excitation properties, which we specify in detail below.

Assumption 5.1 (State detectability). System (5.1) admits an i-IOSS Lyapunov
function U : X × X → R≥0, that is, there exist matrices P , P , Sx, Qx, Rx ≻ 0
and a constant ηx ∈ (0, 1) such that

|x1 − x2|2P ≤ U(x1, x2) ≤ |x1 − x2|2P , (5.4)

U(f(x1, u, w1, p1), f(x2, u, w2, p2))
≤ ηxU(x1, x2) + |p1 − p2|2Sx + |w1 − w2|2Qx + |h(x1, u, w1, p1) − h(x2, u, w2, p2)|2Rx

(5.5)

for all (x1, u, w1, p1), (x2, u, w2, p2) ∈ Z.

Assumption 5.1 is equivalent1 to exponential i-IOSS when interpreting the param-
eter p as additional (constant) exogenous input in (5.1a). This concept became
standard as a description of nonlinear detectability in the context of MHE (for state
estimation) in recent years, see, e.g., [RMD20; AR21; KM23; Hu24; Sch+23]. It
essentially implies that the difference between any two state trajectories is bounded
by the differences of their initial states, their disturbance inputs, their parameters,
and their outputs, see Chapter 2 for more details on this topic. We point out that
Assumption 5.1 is not restrictive; in fact, by an extension of the results from [ART21;
KM23], one can show that this constitutes a necessary and sufficient condition for
the existence of robustly stable state estimators if the true parameter is known, and
of practically stable state estimators with respect to the parameter error when only
an estimate of the true parameter is available. Moreover, Assumption 5.1 can be
numerically verified using LMIs and SDP by adapting our results from Section 7.1.1
below.
In the following, we first consider the special case of constant parameters p(t) = p
in (5.1b) and propose a suitable MHE scheme for joint state and parameter estima-
tion. To this end, we employ a certain non-uniform PE property to distinguish the
cases where the currently involved data segments are informative enough for param-
eter estimation or not. In Section 5.3, we generalize the overall MHE framework by
considering the case of time-varying parameters as described by (5.1b). Here, we
adapt our notion of PE and modify the MHE scheme and analysis accordingly.

1This follows by a straightforward adaption of the converse Lyapunov theorem from [ART21].
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5.2. Constant parameters

In this section, we address MHE for joint state and parameter estimation for the case
of constant parameters, that is, where g(p, u, w) = p in (5.1b). We outline the MHE
design in Section 5.2.1, provide a detailed technical analysis in Section 5.2.2, discuss
the special case of uniform persistent excitation in Section 5.2.3, and illustrate the
efficiency of the proposed approach with a numerical example in Section 5.2.4.
We now specify the notion of PE used in this section. In particular, we define the
set of persistently excited trajectory pairs, which contains all trajectory pairs that
exhibit a T -step distinguishability property with respect to the parameters.

Definition 5.1 (Set of persistently excited trajectory pairs). Consider some fixed
matrices Sp, Pp, Qp, Rp ≻ 0 and a constant ηp ∈ (0, 1). The set containing all
persistently excited trajectory pairs of length T ∈ I≥0 is defined as

ET :=
({(x1(t), u(t), w1(t), p1)}T −1

t=0 , {(x2(t), u(t), w2(t), p2)}T −1
t=0

)
∈ ZT × ZT :

xi(t+ 1) = f(xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,T −1],

yi(t) = h(xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,T −1],

|p1 − p2|2Sp ≤ ηT
p |x1(0) − x2(0)|2Pp

+
T −1∑
j=0

ηT −j−1
p

(
|w1(j) − w2(j)|2Qp + |y1(j) − y2(j)|2Rp

).
For two trajectories that share the same initial state and the same disturbance in-
puts, if they form a pair contained in the set ET , it holds that the sum of their
output differences is zero if and only if their parameters are the same. In other
words, trajectory pairs contained in ET are sufficiently excited—and hence infor-
mative enough—for parameter estimation. In Section 5.2.3, we discuss the relation
between detectability of the states (Assumption 5.1), excited trajectory pairs (Def-
inition 5.1), uniform PE, and a uniform joint detectability condition for both the
states and the parameters.

5.2.1. Design

The MHE scheme we propose below is a modification of the basic discrete-time
MHE scheme from Section 3.1, particularly tailored to joint state and parameter
estimation. Here, we will mainly focus on the technical description of the scheme;
for a more detailed discussion, we refer to Section 3.1.
At each time t ∈ I≥0, the proposed MHE scheme considers measured past input-
output sequences of the system (5.1) within a moving horizon of length Nt =
min{t, N} for some N ∈ I≥0. For convenience, we denote them by the corresponding
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truncated data sequences restricted to the horizon:

ut = {ut(j)}Nt−1
j=0 , ut(j) = u(t−Nt + j), j ∈ I[0,Nt−1], t ∈ I≥0, (5.6)

yt = {yt(j)}Nt−1
j=0 , yt(j) = y(t−Nt + j), j ∈ I[0,Nt−1], t ∈ I≥0. (5.7)

The current state and parameter estimates x̂(t) and p̂(t) at time t ∈ I≥0 are then
obtained by solving the following NLP:

min
x̂t,p̂t,ŵt

J(x̂t, p̂t, ŵt, ŷt, t) (5.8a)

s.t. x̂t(j + 1) = f(x̂t(j), ut(j), ŵt(j), p̂t), j ∈ I[0,Nt−1], (5.8b)
ŷt(j) = h(x̂t(j), u(j), ŵt(j), p̂t), j ∈ I[0,Nt−1], (5.8c)
(x̂t(j), ut(j), ŵt(j), p̂t) ∈ Z, j ∈ I[0,Nt−1]. (5.8d)

The cost function J(·) is specified below. The decision variables x̂t := {x̂t(j)}Nt
j=0 ∈

X Nt+1, p̂t ∈ P , and ŵt := {ŵt(j)}Nt−1
j=0 ∈ WNt denote the estimated state sequence,

parameter, and disturbance sequence over the horizon, respectively, estimated at
time t. When implementing the scheme in practice, it may be beneficial to employ a
multiple shooting formulation for the parameter as well in order to create sparsity of
the NLP, compare also Section 3.1. In this case, the vector p̂t needs to be replaced
by a sequence p̂t = {p̂t(j)}Nt

j=0 that is kept constant by adding the artificial constant
parameter dynamics p̂t(j+1) = p̂t(j), j ∈ I[0,Nt−1] as optimization constraint in (5.8).
The constraint in (5.8d) enforces prior knowledge about the domain of the system,
where we use the set Z defined in (5.3) to keep the notation concise, compare
Section 3.1 for an alternative (variable-wise) formulation. Given the past input
sequence ut in (5.6), the decision variables x̂t, p̂t, and ŵt uniquely define a sequence
of output estimates ŷt := {ŷt(j)}Nt−1

j=0 under the output equation in (5.8c).
In (5.8a), we use the discounted quadratic cost function

J(x̂t, p̂t, ŵt, ŷt, t) := γ(Nt)|x̂t(0) − x̄(t−Nt)|2W (t−Nt) + ηNt
1 |p̂t − p̄(t−Nt)|2V (t−Nt)

+
Nt−1∑
j=0

ηNt−j−1
2

(
|ŵt(j)|2Q(t−Nt+j) + |ŷt(j) − yt(j)|2R(t−Nt+j)

)
,

(5.9)

where the prior state and parameter estimates x̄(t−Nt) and p̄(t−Nt) are specified
below. We impose the following conditions on the cost function parameters γ(·), η1,
η2 and the weighting matrices W (t), V (t), Q(t), and R(t).

Assumption 5.2 (Cost function). The discount parameters γ, η1, η2 satisfy

γ(s) = ηs
x + λmax(Pp, P )ηs

p, s ≥ 0, (5.10)
η1 ∈ (max{ηx, ηp}, 1), (5.11)
η2 ∈ [max{ηx, ηp}, 1). (5.12)
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Furthermore, there exist matrices W,V , V ,Q,R ≻ 0 such that

2P ⪯ W (t) ⪯ W, (5.13)
2Sp ⪯ 2V ⪯ V (t) ⪯ V , (5.14)
2(Qx +Qp) ⪯ Q(t) ⪯ Q, (5.15)
Rx +Rp ⪯ R(t) ⪯ R (5.16)

uniformly for all t ∈ I≥0.

Assumption 5.2 ensures large tuning capabilities of the cost function (5.9) while
satisfying certain relations to the detectability and excitation properties from As-
sumption 5.1 and Definition 5.1. This is conceptually similar to the recent MHE
literature (for state estimation) and typically permits a less conservative stability
analysis due to the structural similarities between the detectability condition, the
MHE scheme, and the desired stability property, compare Remark 3.3 and see the
discussion in Section 3.3 for more details. Potential time dependency of the weight-
ing matrices in (5.13)–(5.16) can be used to incorporate additional knowledge (e.g.,
by choosing Kalman filter covariance update laws [QH09; RRM03]), which can be
beneficial in practice to improve estimation performance. Assumption 5.2 implies
that the cost function (5.9) is radially unbounded in the (condensed) decision vari-
ables, which together with continuity of f and h ensures that the estimation problem
described by (5.8) and (5.9) admits a (not necessarily unique) globally optimal so-
lution at any time t ∈ I≥0, compare [RMD20, Sec. 4.2]. In the following, we denote
a corresponding minimizer by the tuple (x̂∗

t , p̂
∗
t , ŵ

∗
t ).

It remains to define suitable update laws for the prior estimates to ensure a proper
regularization of the cost function (5.9). To this end, for the state prior we select

x̄(t) =
x̂

∗
t (N), t ∈ I≥N

χ̂, t ∈ I[0,N−1].

This choice corresponds to the filtering prior, compare [RMD20, Sec. 4.3] and see also
Section 3.1. For the parameter prior, we propose the following excitation-dependent
update law:

p̄(t) =
p̂

∗
t , if t ∈ I≥N and X(t) ∈ EN ,

p̄(t−Nt), otherwise,
(5.17)

where p̄(0) = ξ̂ and

X(t) :=
(

{(x̂∗
t (j), ut(j), ŵ∗

t (j), p̂∗
t )}Nt−1

j=0 , {(x(j), u(j), w(j), p)}t−1
j=t−Nt

)
is the pair of the currently optimal and (unknown) true trajectory restricted to
the estimation horizon. The update law in (5.17) depends on the excitation of
the trajectory pair X(t), where EN is from Definition 5.1. In particular, the prior
estimate p̄(t) is updated with the currently estimated parameter p̂∗

t only if p̂∗
t was

computed using sufficiently informative data. Conversely, if we detect insufficient
excitation, we simply select the past prior p̄(t−Nt) as the new prior p̄(t). Overall,
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this procedure ensures that the MHE cost function in (5.9) is always regularized with
a meaningful prior that was computed using informative data. In Section 7.2, we
propose suitable methods to practically check whether the respective PE condition
X(t) ∈ EN holds (in particular, without knowledge of the unknown true trajectory).
The resulting state and parameter estimates at time t ∈ I≥0 are then defined x̂(t) =
x̂∗

t (Nt) and p̂(t) = p̂∗
t (compare also Remark 5.2 for an alternative definition of the

current parameter estimate). This leads to the joint state and parameter estimation
error

e(t) =
[
ex(t)
ep(t)

]
=
[
x̂(t) − x(t)
p̂(t) − p

]
, t ∈ I≥1, e(0) =

[
χ̂− χ

ξ̂ − p

]
. (5.18)

In the following, we show how the horizon length N must be chosen so that the
estimation error (5.18) exhibits a certain robust stability property that is valid
regardless of the parameter excitation.

5.2.2. Stability analysis

Our theoretical analysis relies on the following two Lyapunov function candidates:

Γ1(t, x̂, x, p̂, p) = U(x̂, x) + |p̂− p|2V (t), (5.19)
Γ2(x̂, x, p̂, p) = U(x̂, x) + c|p̂− p|2

V
, c ≥ 1, (5.20)

where U is the i-IOSS Lyapunov function from Assumption 5.1 and V (t) ⪯ V is
from the cost function (5.9) under Assumption 5.2. The following two auxiliary
results establish fundamental properties of Γ1 and Γ2 for the two cases where the
current level of excitation is too low (X(t) /∈ EN , Lemma 5.1) or sufficiently high
(X(t) ∈ EN , Lemma 5.2).

Lemma 5.1. Let Assumption 5.1 hold. Consider the MHE scheme (5.8) with the cost
function (5.9) satisfying Assumption 5.2. Assume that t ∈ I[0,N−1] or t ∈ {t ∈ I≥N :
X(t) /∈ EN}. Then, it holds that

Γ1(t, x̂(t), x(t), p̂(t), p) ≤ η−N
1 c1(Nt)(ηNt

x + γ(Nt))|x̄(t−Nt) − x(t−Nt)|2W
+ 2c1(Nt)η−N

1 ηNt
1 |p̄(t−Nt) − p|2

V

+ 2c1(Nt)η−N
1

Nt∑
j=1

ηj−1
2 |w(t− j)|2

Q
, (5.21)

where
c1(s) := λ̄(Sx, V )1 − ηs

x
1 − ηx

+ λmax(V , V ), s ≥ 0. (5.22)

Proof. We start by defining the sequences of the true states and disturbances re-
stricted to the estimation horizon:

xt := {xt(j)}Nt
j=0, xt(j) = x(t−Nt + j), j ∈ I[0,Nt], t ∈ I≥0, (5.23)

wt := {wt(j)}Nt−1
j=0 , wt(j) = w(t−Nt + j), j ∈ I[0,Nt−1]. t ∈ I≥0. (5.24)
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Now, consider the function Γ1 in (5.19). Since we have that x̂(t) = x̂∗
t (Nt), the

boundedness property of V (t) from (5.14) implies

Γ1(t, x̂(t), x(t), p̂(t), p) ≤ U(x̂∗
t (Nt), xt(Nt)) + λmax(V , V )|p̂∗

t − p|2V . (5.25)

Due to satisfaction of the MHE constraints (5.8b)–(5.8d), we can invoke Assump-
tion 5.1 (in particular, the dissipation inequality (5.5)), which lets us conclude that

U(x̂∗
t (Nt), xt(Nt)) ≤ ηNt

x U(x̂∗
t (0), xt(0)) +

Nt−1∑
j=0

ηNt−j−1
x |p̂∗

t − p|2Sx

+
Nt−1∑
j=0

ηNt−j−1
x

(
|ŵ∗

t (j) − wt(j)|2Qx + |ŷ∗
t (j) − yt(j)|2Rx

)
.

(5.26)

Note that |p̂∗
t − p|2Sx ≤ λ̄(Sx, V )|p̂∗

t − p|2V . Furthermore, by applying the geometric
series we obtain

Nt−1∑
j=0

ηNt−j−1
x |p̂∗

t − p|2Sx ≤ λ̄(Sx, V )1 − ηNt
x

1 − ηx
|p̂∗

t − p|2V . (5.27)

From the upper bound in (5.4) and Jensen’s inequality, we have

U(x̂∗
t (0), xt(0)) ≤ |x̂∗

t (0) − xt(0)|2
P

≤ 2|x̂∗
t (0) − x̄(t−Nt)|2P + 2|x̄(t−Nt) − xt(0)|2

P
(5.28)

for all j ∈ I[1,Nt]. Similarly, we obtain

|p̂∗
t − p|2V ≤ 2|p̂∗

t − p̄(t−Nt)|2V + 2|p̄(t−Nt) − p|2V (5.29)

and
|ŵ∗

t (j) − wt(j)|2Qx ≤ 2|ŵ∗
t (j)|2Qx + 2|wt(j)|2Qx (5.30)

for all j ∈ I[1,Nt]. Applying (5.26)–(5.30) to (5.25) leads to

Γ1(t, x̂(t), x(t), p̂(t), p)
≤ ηNt

x

(
2|x̂∗

t (0) − x̄(t−Nt)|2P + 2|x̄(t−Nt) − xt(0)|2
P

)
+ c1(Nt)

(
2|p̂∗

t − p̄(t−Nt)|2V + 2|p̄(t−Nt) − p|2V
)

+
Nt−1∑
j=0

ηNt−j−1
x

(
2|ŵ∗

t (j)|2Qx + 2|wt(j)|2Qx + |ŷ∗
t (j) − yt(j)|2Rx

)
,

where we have used the definition of c1(s) from (5.22). Using that ηNt−N
1 ≥ 1 and

c1(Nt) > 1, we can invoke the cost function (5.9) due to the facts that ηs
x ≤ γ(s)

for all s ≥ 0, ηx ≤ η2, and 2P ⪯ W (t) ⪯ W , 2V ⪯ V (t) ⪯ V , 2Qx ⪯ Q(t) ⪯ Q,
Rx ⪯ R(t) for all t ∈ I≥0 by Assumption 5.2, which yields

Γ1(t, x̂(t), x(t), p̂(t), p)

≤ η−N
1 c1(Nt)

(
ηNt

x |x̄(t−Nt) − xt(0)|2
W

+ ηNt
1 |p̄(t−Nt) − p|2

V

+
Nt−1∑
j=0

ηNt−j−1
2 |wt(j)|2Q + J(x̂∗

t , p̂
∗
t , ŵ

∗
t , ŷ

∗
t , t)

)
. (5.31)
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Using optimality and boundedness of W (t), V (t), and Q(t) leads to

J(x̂∗
t , p̂

∗
t , ŵ

∗
t , ŷ

∗
t , t) ≤ J (xt, p, wt, yt, t)

≤ γ(Nt)|xt(0) − x̄(t−Nt)|2W + ηNt
1 |p− p̄(t−Nt)|2V +

Nt−1∑
j=0

ηNt−j−1
2 |wt(j)|2Q. (5.32)

Combining (5.31) and (5.32) and recalling the definitions in (5.23) and (5.24) yields
(5.21), which hence concludes this proof.

Lemma 5.2. Let Assumption 5.1 hold. Consider the MHE scheme (5.8) with the cost
function (5.9) satisfying Assumption 5.2. Assume that X(t) ∈ EN for some t ∈ I≥N .
Then, it holds that

Γ2(x̂(t), x(t), p̂(t), p) ≤ µNΓ1(t−N, x̄(t−N), x(t−N), p̄(t−N), p)

+ 2c2(c,N)
N∑

j=1
ηj−1

2 |w(t− j)|2
Q
, (5.33)

for all c ≥ 1, where

µ := max
{

N
√

2λmax(W,P )c2(c,N)γ(N), N

√
c2(c,N)η1

}
(5.34)

and, for any c ≥ 1 and s ≥ 0,

c2(c, s) := cλmax(V , Sp) + λmax(Sx, Sp)(1 − ηs
x)/(1 − ηx). (5.35)

Proof. We start by following the same arguments as in the beginning of the proof of
Lemma 5.1 (based on the fact that the optimal estimated trajectory is a trajectory
of the i-IOSS system (5.1) by invoking the MHE constraints (5.8b)–(5.8d)). This
allows us to exploit (5.26) and (5.27) with V replaced by Sp, leading to

Γ2(x̂(t), x(t), p̂(t), p) = U(x̂∗
t (N), xt(N)) + c|p̂∗

t − p|2
V

≤ ηN
x U(x̂∗

t (0), xt(0)) + c2(c,N)|p̂∗
t − p|2Sp

+
N−1∑
j=0

ηN−j−1
x

(
|ŵ∗

t (j) − wt(j)|2Qx + |ŷ∗
t (j) − yj(j)|2Rx

)
with xt and wt as defined in (5.23) and (5.24), respectively, and where we have used
the definition of c2(c,N) from (5.35). In the following, we drop the arguments of c2
for the sake of brevity. Since X(t) ∈ EN by assumption, it follows that

|p̂∗
t − p|2Sp ≤ ηN

p |x̂∗
t (0) − xt(0)|2Pp

+
N−1∑
j=0

ηN−j−1
p

(
|ŵ∗

t (j) − wt(j)|2Qp + |ŷ∗
t (j) − yt(j)|2Rp

)
.

Using the bound on U together with the definition of γ(s) from (5.10) and the fact
that c2(c, s) ≥ 1 for all s > 0 due to c ≥ 1 and (5.14), we obtain

Γ2(x̂(t), x(t), p̂(t), p)

≤ c2

(
γ(N)|x̂∗

t (0) − xt(0)|2
P

+
N−1∑
j=0

η̃N−j−1
(
|ŵ∗

t (j) − wt(j)|2Q̃ + |ŷ∗
t (j) − yt(j)|2R̃

) )
,
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where η̃ := max{ηx, ηp}, Q̃ = Qx + Qp, and R̃ := Rx + Rp. Application of (5.28)
and (5.30) with Qx replaced by Q̃ together with the definition of the cost function J
from (5.9) and Assumption 5.2 leads to

Γ2(x̂(t), x(t), p̂(t), p) ≤ c2

(
γ(N)|x̄(t−N) − xt(0)|2

W
+

N−1∑
j=0

ηN−j−1
2 |wt(j)|2Q

+ J(x̂∗
t , p̂

∗
t , ŵ

∗
t , ŷ

∗
t , t)

)
.

By optimality, the first inequality in (5.32) holds, which leads to

Γ2(x̂(t), x(t), p̂(t), p) ≤ 2c2γ(N)|x̄(t−N) − xt(0)|2
W

+ c2η
N
1 |p̄(t−N) − p|2V (t−N)

+ 2c2

N−1∑
j=0

ηN−j−1
2 |wt(j)|2Q.

Application of |x̄(t − N) − xt(0)|2
W

≤ λmax(W,P )|x̄(t − N) − xt(0)|2P and recalling
the definitions of Γ1 from (5.19), µ from (5.34), and xt and wt from (5.23) and (5.24)
yields (5.33), which finishes this proof.

Now, let
ρ := max

{
η−N

1 c1(N)(ηN
x + γ(N))λmax(W,P ), ηN

2

}
(5.36)

and c be such that
c = 2c1(N)/(1 − ρ) + 1 (5.37)

with c1 from (5.22). The robustness guarantees for the proposed MHE scheme
require satisfaction of the following conditions on the horizon length N :

2λmax(W,P )c2(c,N)γ(N) < 1, (5.38)
c2(c,N)ηN

1 < 1, (5.39)
η−N

1 c1(N)(ηN
x + γ(N))λmax(W,P ) < 1, (5.40)

where c1(s) and γ(s) are from (5.22) and (5.10), respectively. The conditions (5.38)
and (5.39) imply that µ ∈ (0, 1) in (5.34) and hence ensure contraction of the
state and parameter estimation error in case the excitation condition used in (5.17)
is met (i.e., X(t) ∈ EN). Condition (5.40) implies ρ ∈ (0, 1) in (5.36) and c ≥ 1
in (5.37) and hence ensures boundedness of the estimation error in case the excitation
condition is not met (i.e., X(t) ̸= EN). Under Assumption 5.2, there always exists a
sufficiently large N such that the contraction conditions (5.38)–(5.40) are satisfied.
This becomes apparent by noting that the left-hand side of each of these conditions
can be bounded by a function that exponentially decays to zero as N → ∞, which
follows by invoking (5.10)–(5.12) and uniform boundedness of c1 and c2 from (5.22)
and (5.35).
At each time t ∈ I≥0, we split the interval [0, t] into sub-intervals of length N and
the remainder l = t− ⌊t/N⌋N :

t = l +
k∑

m=1
(im + 1)N + jN, (5.41)
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Figure 5.1. Division of the current time interval I[0,t] corresponding to the sum in (5.41).
The times t1, t2, ..., tk refer to PE horizons where X(ti) ∈ EN for i ∈ I[1,k].

where k ∈ I≥0, im ∈ I[1,k] for k ∈ I≥1, and j ∈ I≥0 are defined as follows. First, let
the set

Tt :=
{
τ ∈ I[N,t] : t− τ =

⌊
t− τ

N

⌋
N, X(τ) ∈ EN

}
contain all past time instants from the set {t, t−N, t−2N, ...} at which the excitation
condition used in (5.17) was met (in the following also referred to as PE horizons for
simplicity). The variable k denotes the total number of PE horizons that occurred
until the current time t and is defined as the cardinality of Tt, i.e., k := |Tt|. Suppose
that k ∈ I≥1. The sequence {tm}k

m=1 contains time instants corresponding to PE
horizons, where t1 := max{τ ∈ Tt} and

tm+1 = max{τ ∈ Tt : τ < tm}, m ∈ I[1,k−1]

if k ∈ I≥2. The sequence {im}k
m=1 denotes the numbers of non-PE horizons (i.e.,

past time instants where the excitation condition (5.17) was not met) between two
successive times tm and tm+1 with

im = tm −N − tm+1

N
, m ∈ I[1,k−1]

if k ∈ I≥2, and2 ik = (tk − N − l)/N . Finally, j stands for the number of non-PE
horizons that occurred between time t and t1 if k ≥ 1 (and between time t and l if
k = 0), i.e.,

j := t− max{τ ∈ Tt, l}
N

.

Overall, the partitioning in (5.41) allows us to theoretically cover occasional oc-
currence of PE horizons, which of course includes the special cases in which PE
horizons never occur (k = 0), or in which all horizons are PE (j = 0, im = 0 for
all m = 1, ..., k). The general partitioning of the interval I[0,t] is also visualized in
Figure 5.1.
We are now in a position to state our main result of this section. Our key argument
is that the Lyapunov function Γ2 in (5.20) decreases from tm to tm+1 (i.e., over
the light-cyan colored areas in Figure 5.1) by invoking the contraction conditions
(5.38)–(5.40) and Lemmas 5.1 and 5.2, provided that N is sufficiently large.

Theorem 5.1. Let Assumption 5.1 hold. Consider the MHE scheme (5.8) with the
cost function (5.9) satisfying Assumption 5.2. Suppose that the horizon length N

2Note that {tm}k
m=1, {im}k

m=1 do not have to be formally defined for k = 0, as this yields an
empty sum in (5.41).
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satisfies (5.38)–(5.40). Then, it holds that

1
C0

Γ1(t, x̂(t), x(t), p̂(t), p)

≤ µkN
(
C1η̃

l|χ̂− χ|2
W

+ C2η
l
1|ξ̂ − p|2

V

)
+ µkN

l∑
r=1

ηr−1
2 |w(l − r)|2Q +

jN∑
r=1

ρr−1
N |w(t− r)|2Q

+
k∑

m=1
µ(m−1)N

(im+1)N∑
r=1

µ̄r−1|w(t− jN −
m−1∑
q=1

(iq + 1)N − r)|2Q (5.42)

for all t ∈ I≥0 and all χ̂, χ ∈ X , all ξ̂, p ∈ P, and all input and disturbance sequences
u ∈ U∞ and w ∈ W∞, respectively, where η̃ = max{ηx, ηp}, µ̄ = max{µ, ρN},
ρN = N

√
ρ with ρ from (5.36), and

C0 := cλmax(V , V ), (5.43)
C1 := η−N

1 c1(N)(2 + λmax(Pp, P )), (5.44)
C2 := (2c1(N) + λmax(V , V )−1)η−N

1 , (5.45)
Q := max

{
η−N

1 c1(N), c2(c,N)
}

2Q. (5.46)

Before proving Theorem 5.1, we want to highlight some key properties.
1. By the definition of Γ1 in (5.19) and the lower bound in (5.4), it follows that

Γ1(t, x̂(t), x(t), p̂(t), p) = U(x̂(t), x(t)) + |p̂(t) − p|2V (t) ≥ |ex(t)|2P + |ep(t)|2V ≥
min{λmin(P ), λmin(V )}|e(t)|2, t ∈ I≥0. Hence, Theorem 5.1 provides a bound
on the joint state and parameter estimation error (5.18) that is valid regardless
of the parameter excitation; it also applies if the excitation condition in (5.17)
is never met (which corresponds k = 0 in (5.42)) and constitutes a bounded-
disturbance bounded-estimation-error property.

2. Satisfaction of the excitation condition in (5.17) for some t ∈ I≥N (leading to
non-zero values of k in (5.42)) always improves the error bound (5.42) with
respect to the initial estimation error.

3. If k → ∞ for t → ∞, then the estimation error converges to a ball centered
at the origin with the radius defined by the true disturbances.

Proof of Theorem 5.1. We prove the statement in five parts—namely, by deriving
bounds

1) on Γ1(t, ·) involving data from [t− jN, t− 1],
2) on Γ2(·) involving data from [t2, t1 − 1],
3) on Γ2(·) involving data from [tk, t1 − 1],
4) on Γ2(·) involving data from [0, l − 1],
5) on Γ1(t, ·) involving all available data from [0, t− 1].
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Part 1. We define
Γ̃1(t) := Γ1(t, x̂(t), x(t), p̂(t), p) (5.47)

for notational brevity and assume that j ∈ I≥1. From Lemma 5.1, the fact that
|x̄(t − N) − x(t − N)|2

W
≤ λmax(W,P )U(x̄(t − N), x(t − N)) by (5.4), and the

contraction condition (5.40), we obtain

Γ̃1(t) ≤ ρU(x̄(t−N), x(t−N)) + c′
1|p̄(t−N) − p|2

V
+

N∑
r=1

ηr−1
2 |w(t− r)|2Q, (5.48)

where c′
1 = 2c1(N), 2c1(N)η−N

1 Q ⪯ Q with Q from (5.46), and ρ satisfies ρ < 1.
In (5.48), note that x̄(t−N) = x̂(t−N) and p̄(t−N) = p̄(t−qN) = p̄(t−jN) for all
q = 1, ..., j due to the update rule (5.17). Since U(x̂(t−N), x(t−N)) ≤ Γ̃1(t−N)
by (5.19) and the definition of Γ̃1 from above, we can recursively apply (5.48) for j
times, yielding

Γ̃1(t) ≤ ρjU(x̂(t− jN), x(t− jN)) +
j∑

q=1
ρq−1c′

1|p̄(t− jN) − p|2
V

+
j∑

q=1
ρq−1

N∑
r=1

ηr−1
2 |w(t− (q − 1)N − r)|2Q. (5.49)

Using ρN := N
√
ρ ≥ η2 (this follows by the definition of ρ in (5.36)), the geometric

series, and c′
1/(1 − ρ) = 2c1(N)/(1 − ρ) < c by (5.37), we have that

Γ̃1(t) ≤ Γ2(x̂(t− jN), x(t− jN), p̄(t− jN), p) +
jN∑
r=1

ρr−1
N |w(t− r)|2Q. (5.50)

Part 2. Assume that k ∈ I≥1. Then, t− jN = t1 corresponds to the most recent PE
horizon where X(t1) ∈ EN and p̄(t − jN) = p̂(t1) by (5.17). Invoking Lemma 5.2
yields

Γ2(x̂(t− jN), x(t− jN), p̄(t− jN), p) = Γ2(x̂(t1), x(t1), p̂(t1), p)

≤ µNΓ1(t1 −N, x̄(t1 −N), x(t1 −N), p̄(t1 −N), p) +
N∑

r=1
ηr−1

2 |w(t1 − r)|2Q, (5.51)

where we have used that 2c2(c,N)Q ⪯ Q with Q from (5.46). By the definition of
Γ1 from (5.19), we obtain

Γ1(t1 −N, x̄(t1 −N), x(t1 −N), p̄(t1 −N), p)
= U(x̄(t1 −N), x(t1 −N)) + |p̄(t1 −N) − p|2V (t−N)

≤ Γ1(t1 −N, x̂(t1 −N), x(t1 −N), p̂(t1 −N), p) + |p̄(t1 − (i1 + 1)N) − p|2
V
,

(5.52)

where we have used that x̄(t1 − N) = x̂(t1 − N) and p̄(t1 − N) = p̄(t1 − qN) =
p̄(t1 − (i1 + 1)N) for all q = 1, ..., i1 + 1. In the following, consider k ∈ I≥2. Then,
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p̄(t1 −(i1 +1)N) = p̂(t2). Using a similar argument as in (5.49), the geometric series,
and the definition of ρN , we have that

Γ1(t1 −N, x̂(t1 −N), x(t1 −N), p̂(t1 −N), p)

≤ ρi1U(x̂(t2), x(t2)) + c′
1

1 − ρ
|p̂(t2) − p|2

V
+

i1N∑
r=1

ρr−1
N |w(t1 −N − r)|2Q. (5.53)

Combining (5.51)–(5.53) with the fact that c = c′
1/(1 − ρ) + 1 and the definition of

µ̄ := max{µ, ρN}, we obtain

Γ2(x̂(t1), x(t1), p̂(t1), p) ≤ µNΓ2(x̂(t2), x(t2), p̂(t2), p) +
(i1+1)N∑

r=1
µ̄r−1|w(t1 − r)|2Q.

(5.54)

Part 3. Suppose that k ∈ I≥2. By applying (5.54) recursively for all m ∈ I[1,k−1] and
the fact that t− jN −∑k

m=1(im + 1)N = l by (5.41), we can infer that

Γ2(x̂(t− jN), x(t− jN), p̄(t− jN), p)
≤ µkNΓ2(x̂(l), x(l), p̄(l), p)

+
k∑

m=1
µ(m−1)N

(im+1)N∑
r=1

µ̄r−1|w(t− jN −
m−1∑
q=1

(iq + 1)N − r)|2Q. (5.55)

Part 4. By the definition of Γ2 from (5.20), it follows that

Γ2(x̂(l), x(l), p̄(l), p) = U(x̂(l), x(l)) + c|p̄(l) − p|2
V

+ c|p̂(l) − p|2
V

≤ C0(Γ1(l, x̂(l), x(l), p̂(l), p) + λmax(V , V )−1|p̄(l) − p|2
V

)
(5.56)

with C0 from (5.43), and where p̄(l) = ξ̂ by (5.17). By using Lemma 5.1 with
x̄(0) = χ̂ and p̄(0) = ξ̂, we obtain

Γ1(l, x̂(l), x(l), p̂(l), p)

≤ c1(N)η−N
1 (ηl

x + γ(l))|χ̂− χ|2
W

+ c′
1η

−N
1 ηl

1|ξ̂ − p|2
V

+
l∑

r=1
ηr−1

2 |w(l − r)|2Q, (5.57)

where we have used the definitions of c′ and Q together with the facts that l < N and
c1(s) is monotonically increasing in s. From (5.56) and (5.57) and the definitions of
C1 and C2 from (5.44) and (5.45), we can infer that

Γ2(x̂(l), x(l), p̄(l), p) ≤C0

(
C1η̃

l|χ̂− χ|2
W

+ C2η
l
1|ξ̂ − p|2

V
+

l∑
r=1

ηr−1
2 |w(l − r)|2Q

)
.

(5.58)

Part 5. The property in (5.42) finally follows by combining (5.50), (5.55), and (5.58),
using that C0 > 1, and noting that the result holds for all l ∈ I[0,N−1], k ∈ I≥0, and
j ∈ I≥0 (i.e., for all t ∈ I≥0), which finishes this proof.
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Remark 5.2 (Periodicity in the parameter estimates). The update rule (5.17) leads to
a certain periodic behavior of the estimation error and its theoretical bounds. In par-
ticular, while accurate estimates and error bounds propagate over an integer multiple
of N time steps, this has no effect on the estimates and bounds in between. Improving
this is an interesting topic for future work; this would require using a different prior
parameter estimate p̄(t−Nt) (e.g., the most recent estimate that was computed with
sufficiently excited data), demanding the development of different proof techniques.
A practical solution to avoid propagation of poor parameter estimates is to just select
p̂(t) as the most recent estimate that was computed using PE data, i.e., p̂(t) = p̂∗

τ ,
τ = max{τ ∈ I[0,t], X(τ) ∈ ENt}. We emphasize that in this case, the above developed
theoretical guarantees are still valid: the error ep(t) = p̂(t) − p is bounded by (5.42)
at time t = τ due to the fact that λmin(V )|ep(τ)|2 ≤ Γ1(τ, x̂(τ), x(τ), p̂(τ), p).

In the following, we show that if the time between two consecutive PE horizons
can be uniformly bounded for all times, Theorem 5.1 specializes to RGES of the
estimation error. In practice, this can be the case for processes that are subject to
a certain periodicity, such as in industrial robotics or automated logistics, compare,
for example, [FTK13; Rom+22].

Corollary 5.1. Let the conditions of Theorem 5.1 be satisfied. Assume that there
exists a constant κ ≥ 0 such that j ≤ κ and im ≤ κ for all m ∈ I[1,k] uniformly for
all t ∈ I≥0. Then, the joint estimation error (5.18) is RGES, that is, there exist
K1, K2 ≥ 0 and λ1, λ2 ∈ (0, 1) such that

|e(t)| ≤ max
{
K1λ

t
1|e(0)|, K2 max

r∈[1,t]
λr−1

2 |w(t− r)|
}

(5.59)

for all t ∈ I≥0 and all χ̂, χ ∈ X , all ξ̂, p ∈ P, and all input and disturbance sequences
u ∈ U∞ and w ∈ W∞.

Proof. Consider (5.42). Define µκ := µ̄
1

κ+1 with µ̄ ≥ max{µ, ρN} from Theo-
rem (5.1). Since j and im are uniformly bounded by κ for all m ∈ I[1,k] and k ∈ I≥1,
we can write that

µsN ≤ µs(κ+1)N
κ ≤ µ

∑s

m=1(im+1)N
κ (5.60)

for all s ∈ I[0,k]. Since, 1 ≤ µ−κN
κ µqN

κ for all q ∈ {j, {im}k
m=1} and µκ ≥ η̃, we can

also infer that
µkNηl

1 ≤ µkN η̃l ≤ µ−κN
κ µjN

κ µkNµl
κ ≤ µ−κN

κ µt
κ, (5.61)

where the last inequality followed by (5.60). In addition, we can write that
k∑

m=1
µ(m−1)N

(im+1)N∑
r=1

µ̄r−1|w(t−jN−
m−1∑
q=1

(iq +1)N−r)|2Q ≤
t−jN−l∑

r=1
µ̄r−1|w(t−jN−r)|2Q

(5.62)
by (5.60) with s = m− 1 and (5.41). Hence, from Theorem 5.1, the definition of µκ,
and (5.60)–(5.62), we obtain

µκN
κ

C0
Γ1(t, x̂(t), x(t), p̂(t), p) ≤ C1µ

t
κ|χ̂− χ|2

W
+ C2µ

t
κ|ξ̂ − p|2

V
+

t∑
r=1

µr−1
κ |w(t− r)|2Q.
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Using the definition of Γ1 from (5.19), the estimation error (5.18) satisfies

|e(t)|2 ≤ K̃1µ
t
κ|e(0)|2 + K̃2

t∑
r=1

µr−1
κ |w(t− r)|2 (5.63)

with the constants K̃1 := K̃3 max{C1λmax(W ), C2λmax(V )} and K̃2 := K̃3λmax(Q),
where K̃3 := C0(µκN

κ min{λmin(P ), λmin(V )})−1. By the geometric series, we have
that

t∑
r=1

µr−1
κ |w(t− r)|2 ≤ 1

1 − √
µκ

max
r∈[1,t]

√
µκ

r−1|w(t− r)|2. (5.64)

By taking the square root of (5.63) and using (5.64), we obtain (5.59) with constants
K1 =

√
2K̃1, K2 =

√
2K̃2/(1 − √

µκ), λ1 = √
µκ, and λ2 = 4

√
µκ, which finishes this

proof.

5.2.3. Special case: uniform persistent excitation

In the following, we consider the special case in which the excitation condition
in (5.17) is always satisfied by the following uniform PE condition.

Assumption 5.3 (Uniform persistent excitation). There exists T ∈ I≥0 such that(
{(x1(t), u(t), w1(t), p1)}K−1

t=0 , {(x2(t), u(t), w2(t), p2)}K−1
t=0

)
∈ EK

for all K ∈ I≥T and all trajectories {(xi(t), u(t), wi(t), pi)}K−1
t=0 ∈ ZK, i = 1, 2,

satisfying (5.1) for all t ∈ I[0,K−1].

Assumption 5.3 essentially imposes that any two system trajectories of certain length
form a persistently excited trajectory pair. Robust stability guarantees for joint state
and parameter estimation under Assumptions 5.1 and 5.3 are provided by Corol-
lary 5.1 (with κ = 0); however, we want to emphasize the following implications.

Proposition 5.1. Consider the system (5.1). The following statements are equivalent:
(a) Assumptions 5.1 and 5.3 hold.
(b) There exists a joint i-IOSS Lyapunov function G : X × X × P × P → R≥0

such that, for some G,G,Q,R ≻ 0 and a constant η ∈ (0, 1),∣∣∣∣∣
[
x1 − x2
p1 − p2

]∣∣∣∣∣
2

G

≤ G(x1, x2, p1, p2) ≤
∣∣∣∣∣
[
x1 − x2
p1 − p2

]∣∣∣∣∣
2

G

, (5.65)

G(f(x1, u, w1, p1), f(x2, u, w2, p2), p1, p2)
≤ ηG(x1, x2, p1, p2) + |w1 − w2|2Q + |h(x1, u, w1, p1) − h(x2, u, w2, p2)|2R

(5.66)

for all (x1, u, w1, p1), (x2, u, w2, p2) ∈ Z.
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Proposition 5.1 essentially implies that state detectability (Assumptions 5.1) and
uniform PE of the parameters (Assumption 5.3) is equivalent to uniform detectabil-
ity (exponential i-IOSS) of the augmented state xa = [x⊤, p⊤]⊤. Consequently, un-
der these assumptions one could simply consider the augmented state xa and apply
MHE schemes with corresponding theory for state estimation (e.g., [AR21; KM23;
Sch+23]). However, Assumption 5.3 is restrictive, usually not satisfied in practice,
and its a priori verification is generally impossible. The proposed method from
Section 5.2.1, on the other hand, provides a strict relaxation, since it is applicable in
the practically relevant case where the parameters are only rarely (or never) excited,
which violates Assumption 5.3 and hence implies that the augmented state cannot be
uniformly detectable (exponentially i-IOSS) and no joint i-IOSS Lyapunov function
satisfying (5.65) and (5.66) can exist.

Proof of Proposition 5.1. Let K ∈ I≥1 and {(xi(t), u(t), wi(t), pi)}K−1
t=0 ∈ ZK , i =

1, 2 be two sequences that satisfy (5.1) for all t ∈ I[0,K−1]. Define the corresponding
outputs yi(t) = h(xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,K−1]. For the sake of con-
ciseness, define ∆x(t) := x1(t) − x2(t) for t ∈ I[0,K], ∆w(t) := w1(t) − w2(t) and
∆y(t) := y1(t) − y2(t) for t ∈ I[0,K−1], and ∆p := p1 − p2.
We start with (a) ⇒ (b). Assumption 5.1 implies the following bound (by application
of (5.5), (5.4), and the geometric series):

|∆x(t)|2P + |∆p|2Sx ≤ ηt
x|∆x(0)|2

P
+
(

1
1 − ηx

+ 1
)

|∆p|2Sx

+
t∑

j=1
ηj−1

x

(
|∆w(t− j)|2Qx + |∆y(t− j)|2Rx

)
(5.67)

for all t ∈ I[0,K], where we also added |∆p|2Sx to both sides. We make a case distinc-
tion and first consider t ∈ I[T,K]. Application of |∆p|2Sx ≤ λmax(Sx, Sp)|∆p|2Sp and
Assumption 5.3 leads to

|∆x(t)|2P + |∆p|2Sx ≤ η̃t|∆x(0)|2P̃1
+

t∑
j=1

η̃j−1
(
|∆w(t− j)|2Q̃ + |∆y(t− j)|2R̃

)
, (5.68)

where we have used the definitions η̃ := max{ηx, ηp}, P̃1 := P+c1Pp, Q̃ := Qx+c1Qp,
and R̃ := Rx + c1Rp with c1 :=

(
1

1−ηx
+ 1

)
λmax(Sx, Sp). Now, recall that (5.67) also

applies for t ∈ I[0,T −1]. Using the fact that 1 ≤ η̃1−T η̃t for all t ∈ I[0,T −1], one can
verify that

c2
(
|∆x(t)|2 + |∆p|2

)
≤ c3η̃

t
(
|∆x(0)|2 + |∆p|2

)
+

t∑
j=1

η̃j−1
(
|∆w(t− j)|2Q̃ + |∆y(t− j)|2R̃

)
(5.69)

for all t ∈ I[0,K], where c2 := min{λmin(P ), λmin(Sx)} and

c3 := max
{
λmax(P̃1), λmax(Sx)η̃1−T

(
1

1 − ηx
+ 1

)}
.
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Consider the augmented states

xa
1(t) =

[
x1(t)
p1

]
, xa

2(t) =
[
x2(t)
p2

]
,

which evolve according to the augmented system dynamics

xa
i (t+ 1) = fa(xa

i (t), u(t), wi(t)) :=
[
f(xi(t), u(t), wi(t), pi)

pi

]
, i = 1, 2, t ∈ I[0,K−1].

(5.70)
By satisfaction of (5.69) and the fact that |∆x(t)|2 + |∆p|2 = |xa

1(t) − xa
2(t)|2, we

observe that the system (5.70) is exponentially i-IOSS [RMD20, Def. 4.5] with re-
spect to the outputs ya

i (t) = ha(xa
i (t), u(t), wi(t)) := h(xi(t), u(t), wi(t), pi), i = 1, 2,

t ∈ I[0,K−1]. Existence of an i-IOSS Lyapunov function G(·) and suitable matrices
G,G,Q,R ≻ 0 satisfying (5.65) and (5.66) follows by a straightforward extension of
the converse Lyapunov theorem from [ART21].
It remains to show (b) ⇒ (a). Application of (5.66) and (5.65) yields

λmin(G)
(
|∆x(t)|2 + |∆p|2

)
≤ λmax(G)ηt

(
|∆x(0)|2 + |∆p|2

)
+

t∑
j=1

ηj−1
(
|∆w(t− j)|2Q + |∆y(t− j)|2R

)
(5.71)

for all t ∈ I[0,K]. Using that |∆p| ≥ 0, we obtain

λmin(G)|∆x(t)|2 ≤ λmax(G)ηt|∆x(0)|2

+
t∑

j=1
ηj−1

(
λmax(G)|∆p|2 + |∆w(t− j)|2Q + |∆y(t− j)|2R

)
,

which is an (exponential) i-IOSS bound for the system (5.1) considering p as an
additional constant input. Existence of an i-IOSS Lyapunov function U(x1, x2) and
matrices P , P ,Qx, Rx ≻ 0 and ηx ∈ (0, 1) satisfying Assumption 5.1 follows by a
straightforward extension of the converse Lyapunov theorem from [ART21]. Now
fix T ∈ I≥1 and consider some K ∈ I≥T . From (5.71) with t = K and the facts that
ηK ≤ ηT and |∆xK |2 ≥ 0, we obtain

(λmin(G) − λmax(G)ηT )|∆p|2 ≤ λmax(G)ηK |∆x(0)|2

+
K∑

j=1
ηj−1

(
|∆w(K − j)|2Q + |∆y(K − j)|2R

)

for allK ∈ I≥T . Since there always exists T ∈ I≥1 such that (λmin(G)−λmax(G)ηT ) >
0, Assumption 5.3 is satisfied, which finishes this proof.
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5.2.4. Numerical example

To illustrate our results, we consider the following system

x+
1 = x1 + t∆b1(x2 − a1x1 − a2x

2
1 − px3

1) + w1,

x+
2 = x2 + t∆(x1 − x2 + x3) + w2,

x+
3 = x3 − t∆b2x2 + w3,

y = x1 + w4,

which corresponds to the Euler-discretized modified Chua’s circuit system from
[YZ15] using the step size t∆ = 0.01 under additional disturbances w(t) ∈ R4 and
(noisy) output measurements. The parameters are b1 = 12.8, b2 = 19.1, a1 = 0.6,
a2 = −1.1, and p = 0.45, which leads to a chaotic behavior of the system. In the
following, we treat w(t) as a uniformly distributed random variable with |wi(t)| ≤
10−3, i = 1, 2, 3 for the process disturbance and |w4(t)| ≤ 0.1 for the measurement
noise for all t ∈ I≥0. We consider the initial condition x(0) = χ = [1, 0,−1]⊤ and
assume that x(t) evolves in the (known) set X = [−1, 3] × [−1, 1] × [−3, 3]. Further-
more, we consider the case where the exact parameter p is unknown but contained
in the set P = [0.2, 0.8].
From the system equations, we see that the unknown parameter p enters the dy-
namics through the product px3

1; hence, the excitation of p crucially depends on the
magnitude of x1. Figure 5.2 shows an exemplary system trajectory for the initial
condition χ under random disturbances and measurement noise. Here, we find that
there are relatively large time intervals in which the state x1 is close to zero. This
suggests that p is not sufficiently excited in these intervals for proper parameter
estimation, demanding for estimation techniques that are robust in this respect.
The objective is now to compute the state and parameter estimates x̂(t) and p̂(t)
by applying the MHE scheme proposed in Section 5.2 using the initial estimates
χ̂ = [−1, 0.1, 2]⊤ and ξ̂ = 0.2.
To this end, we first construct the i-IOSS Lyapunov function U (Assumption 5.1)
and the set EN (Definition 5.1) using the verification methods presented in Sec-
tions 7.1.1 and 7.2.1, respectively. The computations are carried out in MATLAB
using YALMIP [Löf09] and the SDP solver MOSEK [MOS24]. Specifically, we com-
pute a quadratic i-IOSS Lyapunov function U(x1, x2) = |x − x̃|2Px with Px ≻ 0 by
adapting Corollary 7.1. Fixing some ηx ∈ (0, 1), we can reformulate the dissipation
condition (5.5) as an infinite set of LMIs using the differential dynamics, which we
verify on X at selected grid points. The conditions are met for, e.g., ηx = 0.91,

Px =

14.85 −1.91 0.02
−1.91 2.18 −0.18
0.02 −0.18 0.04

 , (5.72)

Sx = 2 · 102, Qx = diag(4, 6, 1, 8) · 102, and Rx = 8 · 102. The set EN is constructed
using the methods proposed in Section 7.2.1, where we verify Assumption 7.6 by
choosing L(z1, z2) such that Φ in (7.40) becomes constant. The LMI (7.41) is satisfied
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Figure 5.2. Solution of the modified Chua’s circuit system under process disturbances and
measurement noise in 3D space (top) and over time (bottom).

for, e.g., η = 0.71 and

P =

 8.13 −3.67 0.13
−3.67 2.78 −0.14
0.13 −0.14 0.01

 .
Then, we choose ϵ = 10−2 and γ = 10−5 in the proof of Proposition 7.1 such that
ηp = µ = 0.747 in (7.55). We compute the matrices Qp = diag(6, 3, 3, 12) · 103 and
Rp = 6·103 by verifying (7.56) and (7.57) on Z×Z using SOS programming. Finally,
we choose α = 10−3 and set Sp = αγIo, which completes the offline verification.
For a simple cost function design, we first re-scale the i-IOSS Lyapunov function U
(i.e., the matrices Px, Qx, Rx, Sx) by the factor λmax(Sx, Sp). We select constant
weighting matrices W (t) = 2Pp, V (t) = 100Sp, Q(t) = 2(Qx + Qp), and R(t) =
Rx + Rp for all t ∈ I≥0, the discount factors η1 = 0.934, and η2 = 0.9997, and the
horizon length N = 150. These choices satisfy Assumption 5.2 and the contraction
conditions (5.38)–(5.40); the minimal horizon length for the selected parameters is
Nmin = 137. We point out that such a relatively large horizon length is on the one
hand due to some conservative steps in the proofs, but on the other hand inherently
required here since the dynamics of the system under consideration are rather slow
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Figure 5.3. State and parameter estimation errors of MHE1 (assuming uniform PE) and
MHE2 (using excitation monitoring and adaptive regularization).

compared to the sampling time t∆.
We consider the proposed MHE scheme presented in Section 5.2.1 under two dif-
ferent settings: first, without explicit excitation monitoring and naively assuming
uniform PE (satisfaction of Assumption 5.3), denoted as MHE1; second, with the
proposed excitation-dependent regularization update (5.17) and the estimate p̂(t)
in accordance with Remark 5.2, denoted as MHE2. For the latter, we check if
X(t) ∈ ENt by evaluating the function ONt(Z∗

t ) defined in (7.62) in Section 7.2.1 at
the currently optimal solution Z∗

t =
(
x̂∗

t (0), p̂∗
t , {ŵ∗

t (j)}Nt−1
j=0

)
. If the minimal eigen-

value αt := λmin(OT (Z∗
t )) satisfies αt ≥ α for the predefined threshold α used in the

design of the set EN below (5.72) (compare also (7.62) and (7.44)), we consider that
X(t) ∈ ENt , and X(t) /∈ ENt otherwise.
The simulations are carried out in MATLAB over tsim = 5000 time steps. The
estimation errors of MHE1 and MHE2 are shown in Figure 5.3, which initially shows a
fast convergence of the state and parameter estimation errors for both schemes. This
is also evident in Figure 5.4, which illustrates the respective estimated parameters
over time. The initially accurate parameter estimation of both methods results from
a sufficiently high excitation level at the beginning of the simulation, which can be
seen in Figure 5.5.
However, phases of weak excitation occur during the simulation, especially in the
time interval [2000, 3000] (αt is close to zero in Figure 5.5). This renders the parame-
ter unobservable in this interval such that Assumption 5.3 is violated. Consequently,
MHE1 provides very poor parameter estimates in this interval (see the cyan-colored
curves in the Figures 5.3 and 5.4). MHE2, on the other hand, explicitly takes into
account the current excitation level and modifies the cost function and parameter
estimates accordingly. This efficiently compensates for the phases of poor excitation
and leads to significantly better parameter estimation results (see the blue curves in
Figures 5.3 and 5.4). In contrast, we can also observe that the unobservability of the



138 5.2. Constant parameters

Figure 5.4. Parameter estimation results for MHE1 and MHE2. The black-dotted lines
correspond to the bounds of the set P.

Figure 5.5. Excitation level αt; values of αt above the red line indicate sufficient excitation.

parameter has almost no effect on the state estimation results. In fact, the optimal
state trajectories produced by MHE1 and MHE2 are almost identical (hence only
shown as one red curve in Figure 5.3). This can be attributed to the fact that the
parameter has a vanishing influence on the cost function when it is unobservable (in
particular, the influence is not visible in the output fitting error over the horizon).
To quantitatively support our statement, we additionally consider the root mean
square error (RMSE) for the state and parameter estimation error. As Table 5.1
shows, the RMSE of the state estimation error are equal for both MHE1 and MHE2,
whereas the RMSE of the parameter estimation error for MHE2 is more than six
times smaller than MHE1.
We now compare the average time τavrg required to solve the nonlinear program (5.8)
at each time step (on a standard laptop) for the two schemes MHE1 and MHE2. As
the last column in Table 5.1 shows, these are very similar, which is due to the fact
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Table 5.1. Comparison of RMSE and average computation times τavrg of MHE1 and
MHE2.

Scheme RMSE(ex) RMSE(ep) τavrg [ms]
MHE1 0.1707 0.1379 50.01
MHE2 0.1707 0.0209 49.96

RMSE(ei) :=
√

1
Nsim

∑Nsim
r=0 |ei(t)|2, i = {x, p}

that the additional computation of αt required in MHE2 (which mainly consists of
matrix operations) saves time in solving the actual optimization problem due to a
better conditioning of the cost function compared to MHE1 (especially due to the
parameter prior update in (5.17)).
Overall, this simulation example illustrates the efficiency of the presented MHE
scheme for joint state and parameter estimation. In particular, we find that the pro-
posed adaptive regularization formed by the excitation-dependent update in (5.17)
together with the online excitation monitoring method from Section 7.2.1 is able
to effectively compensate for phases of weak excitation and thus ensure reliable
estimation results at all times.

5.3. Time-varying parameters

We now extend the theory developed in the previous sections for constant param-
eters to the more general case of time-varying parameters. Even if the basic idea
remains the same, this modified problem setting requires that some main compo-
nents of the scheme must be changed, additional tools used, and a different proof
technique employed. We clarify the modified setup below, provide the MHE design
in Section 5.3.1, analyze its theoretical properties in Section 5.3.2, and illustrate the
efficiency of the proposed approach with a numerical example in Section 5.3.3.
Since the parameters p(t) of the model in (5.1) are generally unobservable, we require
the following property of the parameter dynamics g in (5.1b) to ensure boundedness
of the estimation error.

Assumption 5.4 (Parameter dynamics). There exists a continuous function V : P ×
P → R≥0 and matrices V , V ≻ 0, Qv ⪰ 0 such that

|p1 − p2|V ≤ V (p1, p2) ≤ |p1 − p2|V , (5.73)

V (g(p1, u, w1), g(p2, u, w2)) − V (p1, p2) ≤ |w1 − w2|Qv (5.74)

for all (x1, u, w1, p1), (x2, u, w2, p2) ∈ Z.

Assumption 5.4 essentially constitutes an incremental Lyapunov characterization of
a uniform bounded-energy bounded-state (UBEBS) stability property. This concept
was originally introduced by [ASW00b] for continuous-time systems and is frequently
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employed in the context of integral input-to-state stability, see, e.g., [HM20; Liu+22].
A (non-incremental) Lyapunov version of UBEBS is also termed zero-output dissipa-
tivity by [ASW00a]. Note that Assumption 5.4 does not impose asymptotic stability
of |p1(t) − p2(t)|, which would render our estimator design task trivial. Instead, it
merely implies that the difference |p1(t) − p2(t)| is bounded at each time t ∈ I≥0
in terms of the initial difference |p1(0) − p2(0)| and the sum of the disturbance dif-
ferences |w1(j) − w2(j)|, j ∈ I[0,t−1], and particularly does not diverge because of
unstable internal dynamics. While this may seem restrictive at first glance, it is ac-
tually very intuitive and in fact necessary for providing bounded estimation errors
with respect to the disturbance energy for the case when the parameter p is unob-
servable during operation (which is also covered in our setup). Note that for the
common special case where g(p, u, w) = p + Bpw, Assumption 5.4 can be satisfied
by choosing V (p1, p2) = |p1 − p2| and Qv = B⊤

p Bp.
In order estimate the unknown parameter p(t), a suitable (non-uniform) observ-
ability notion is required. Here, we consider a modified version of Definition 5.1
and define the set ET containing all trajectory pairs that are sufficiently excited for
parameter estimation.

Definition 5.2 (Set of persistently excited trajectory pairs). Consider some fixed
matrices Sp, Pp, Qp, Rp ≻ 0 and a constant ηp ∈ (0, 1). The set containing all
persistently excited trajectory pairs of length T ∈ I≥0 is defined as

ET :=
({(x1(t), u(t), w1(t), p1(t))}T −1

t=0 , {(x2(t), u(t), w2(t), p2(t))}T −1
t=0

)
∈ ZT × ZT :

xi(t+ 1) = f(xi(t), u(t), wi(t), pi(t)), i = 1, 2, t ∈ I[0,T −1],

pi(t+ 1) = g(pi(t), u(t), wi(t)), i = 1, 2, t ∈ I[0,T −1],

yi(t) = h(xi(t), u(t), wi(t), pi(t)), i = 1, 2, t ∈ I[0,T −1],

|p1(0) − p2(0)|2Sp ≤ ηT
p |x1(0) − x2(0)|2Pp

+
T −1∑
j=0

|w1(j) − w2(j)|2Qp + |y1(j) − y2(j)|2Rp

. (5.75)

In contrast to Definition 5.1 for the case of constant parameters, the PE property
embedded in the set ET is defined with respect to the initial parameters pi(0),
i = 1, 2 of the respective parameter sequences and without discounting the inputs
and outputs. Note that this constitutes a classical observability condition which has
often been used in the literature in the context of nonlinear state estimation, see,
e.g., [RMD20, Def. 4.28] and [FS23; WVD14; ABB08; RRM03], and compare also
[Bes07, Def. 11] and [Bes16]. The additional terms depending on the differences
x1(0) − x2(0) and w1(j) − w2(j), j ∈ I[0,T −1] represent a robust generalization and
stem from the fact that we consider an unknown initial state (x1(0) ̸= x2(0)) and
the presence of unknown disturbances (w1(j) ̸= w2(j), j ∈ I[0,T −1]).



5. Joint state and parameter estimation 141

5.3.1. Design

The MHE scheme that we present below is a modification of the scheme from Sec-
tion 5.2.1 (for the case of constant parameters), mainly differing in that we use a
non-discounted cost function for structural reasons, compare Remark 5.4 below.
At each time t ∈ I≥0, we consider the measured past input-output sequences ut and
yt of the system (5.1) as defined in (5.6) and (5.7), respectively, where we recall that
Nt = min{t, N} for some fixed horizon length N ∈ I≥0. The current estimates x̂(t)
and p̂(t) are then obtained by solving the following NLP:

min
x̂t,p̂t,ŵt

J(x̂t, p̂t, ŵt, ŷt, t) (5.76a)

s.t. x̂t(j + 1) = f(x̂t(j), ut(j), ŵt(j), p̂t(j)), j ∈ I[0,Nt−1], (5.76b)
p̂t(j + 1) = g(p̂t(j), ut(j), ŵt(j)), j ∈ I[0,Nt−1], (5.76c)
ŷt(j) = h(x̂t(j), ut(j), ŵt(j), p̂t(j)), j ∈ I[0,Nt−1], (5.76d)
(x̂t(j), ut(j), ŵt(j), p̂t(j)) ∈ Z, j ∈ I[0,Nt−1]. (5.76e)

The decision variables x̂t = {x̂t(j)}Nt
j=0, p̂t = {p̂t(j)}Nt

j=0, and ŵt = {ŵt(j)}Nt−1
j=0

are the estimated state, parameter, and disturbance sequence over the horizon,
respectively, estimated at time t, which define a sequence of output estimates ŷt =
{ŷt(j)}Nt−1

j=0 under (5.76d). We consider the cost function

J(x̂t, p̂t, ŵt, ŷt, t) = 2γ(Nt)|x̂t(0) − x̄(t−Nt)|2P + 2ηNt |p̂t(0) − p̄(t−Nt)|2V

+
Nt−1∑
j=0

2|ŵt(j)|2Q + |ŷt(j) − yt(j)|2R, (5.77)

where the prior estimates x̄(t − Nt) and p̄(t − Nt) are defined below. The cost
function parameters are chosen depending on the parameters of Assumption 5.1,
Assumption 5.4, and Definition 5.2. In particular, we select Q = Qx + Qv + Qp,
R = Rx +Rp, and the discount factors

γ(s) = ηs
x + λmax(Pp, P )ηs

p, (5.78)
η ∈ (max{ηx, ηp}, 1). (5.79)

Note that tuning the cost function in practice is possible by re-scaling the functions
U and V from Assumptions 5.1 and 5.4, respectively, or the parameters of the
set ET from Definition 5.2, compare also Remark 3.4. Moreover, note also that we
can easily generalize the cost function design to time-varying weighting matrices as
in Section 5.2.1 (i.e., Assumption 5.2); however, for the sake of simplicity we restrict
ourselves to constant weights in the following. As this choice is in fact a special case
of Assumption 5.2, it follows that the optimization problem in (5.76) with (5.77)
admits a globally optimal solution at any time t ∈ I≥0 (compare the discussion below
Assumption 5.2), which we denote by the tuple (x̂∗

t , p̂
∗
t , ŵ

∗
t ).

The prior estimates x̄(t) and p̄(t) are updated similarly to the MHE scheme presented
in Section 5.2.1; in particular, for the state prior x̄(t), we select the filtering prior

x̄(t) =
x̂

∗
t (N), t ∈ I≥N

χ̂, t ∈ I[0,N−1],
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while the parameter prior p̄(t − Nt) is adapted to the level of excitation that is
currently present. To this end, at any time t ∈ I≥0, let

X(t) :=
(
{(x̂∗

t (j), ut(j), ŵ∗
t (j), p̂∗

t (j))}Nt−1
j=0 , {(x(j), u(j), w(j), p(j))}t−1

j=t−Nt

)
denote the pair of the currently optimal and the true system trajectory restricted to
the estimation horizon. Then, we choose the prior estimate p̄(t) (that will be used
in the cost function (5.77) in N time steps in the future) according to the following
update rule:

p̄(t) =
p̂

∗
t (N), if t ∈ I≥N and X(t) ∈ ET ,

g(Nt)(p̄(t−Nt)), otherwise
(5.80)

for t ∈ I≥1 and p̄(0) = ξ̂, where g(Nt)(p̄(t−Nt)) is the solution of the system (5.1b)
after Nt steps initialized at p̄(t−Nt) and driven by the input sequence ut from (5.6)
and the nominal disturbance wn(j) = 0, j ∈ I[0,Nt−1] for all t ∈ I≥0.
The MHE estimates are defined as last element of the optimal state and parameter
sequences x̂∗

t and p̂∗
t , i.e.,

x̂(t) = x̂∗
t (Nt), p̂(t) = p̂∗

t (Nt), (5.81)
and the corresponding estimation error as

e(t) =
[
ex(t)
ep(t)

]
=
[
x̂(t) − x(t)
p̂(t) − p(t)

]
, t ∈ I≥1, e(0) =

[
χ̂− χ

ξ̂ − ξ

]
. (5.82)

Remark 5.3 (Excitation monitoring). The proposed MHE scheme requires monitor-
ing whether X(t) ∈ ET currently holds or not. This is, however, non-trivial for
general nonlinear systems since the second trajectory contained in the pair X(t) is
the true, unknown system trajectory. It can be checked locally by adapting, e.g., the
techniques from [SJ11] or [FS23] that are based on the construction of nonlinear
observability maps using the mean-value theorem evaluated at the estimated trajec-
tory. For the important special case where g(p, u, w) = p + Bpw, in Section 7.2.2
we provide a method to practically check whether the PE condition X(t) ∈ EN holds
(in particular, without knowledge of the unknown true trajectory) by evaluating a
suitably constructed observability metric.

Remark 5.4 (Non-discounted cost function). The main structural difference to the
design in Section 5.2.1 is the fact that the cost function in (5.77) involves a non-
discounted sum of the stage costs. As a consequence, there is a fundamental mis-
match between the detectability condition and cost function, compare Remark 3.3 and
the discussion in Section 3.3. Therefore, the bound on the estimation error that we
establish in Theorem 5.2 below is also conceptually weaker when compared to Theo-
rem 5.1 in the sense that it merely constitutes a bounded-disturbance-energy bounded-
estimation-error property (compared to the bounded-disturbance bounded-estimation-
error property provided by Theorem 5.1). This is mainly because if the parameter
is unobservable during operation, we can only use the Assumption 5.4 to bound the
evolution of the parameter estimation error (which in itself is a non-discounted in-
cremental UBEBS property, compare the discussion below Assumption 5.4), which
needs to be captured in cost function (5.77).
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5.3.2. Stability analysis

In this section, we establish fundamental stability properties of the estimation er-
ror (5.82). The general idea of the proof is similar to the one we used in Section 5.2.2.
Technical difficulties due to the fact that the parameter p(t) evolves according to
the dynamical system (5.1b) are addressed by invoking Assumption 5.4.
We consider the Lyapunov function candidate

Γ(c, x̂, x, p̂, p) = U(x̂, x) + cV (p̂, p)2, c ≥ 1. (5.83)

The following two auxiliary lemmas establish boundedness properties of Γ depending
on the level of excitation.

Lemma 5.3. Let Assumptions 5.1 and 5.4 be satisfied. Consider the MHE scheme
in (5.76) with the cost function in (5.77). Assume that t ∈ I[0,N−1] or t ∈ {t ∈ I≥N :
X(t) /∈ EN}. Then, the estimates (5.81) satisfy

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ η−Nc1(1, Nt)
(

(2ηNt
x + 2γ(Nt))|x̄(t−Nt) − x(t−Nt)|2P

+ 4ηNt |p̄(t−Nt) − p(t−Nt)|2V + 4
Nt∑

j=1
|w(t− j)|2Q

)
(5.84)

with
c1(r, s) = max{r, λmax(Sx, V )η−1

x }(s+ 1)1 − ηs+1
x

1 − ηx
. (5.85)

Proof. We start by defining the sequences of the true states, parameters, and dis-
turbances restricted to the estimation horizon:

xt := {xt(j)}Nt
j=0, xt(j) = x(t−Nt + j), j ∈ I[0,Nt], t ∈ I≥0, (5.86)

pt := {pt(j)}Nt
j=0, pt(j) = p(t−Nt + j), j ∈ I[0,Nt], t ∈ I≥0, (5.87)

wt := {wt(j)}Nt−1
j=0 , wt(j) = w(t−Nt + j), j ∈ I[0,Nt−1], t ∈ I≥0. (5.88)

From (5.83) and the optimal estimates (5.81), we obtain

Γ(1, x̂(t), x(t), p̂(t), p(t)) = U(x̂∗
t (Nt), xt(Nt)) + V (p̂∗

t (Nt), pt(Nt))2. (5.89)

Satisfaction of the MHE constraints (5.76b)–(5.76e) implies that the optimal tra-
jectory satisfies the dynamics (5.1) and (x̂∗

t (j), ut(j), w∗
t (j), p̂∗

t (j)) ∈ Z for all j ∈
I[0,Nt−1]. Invoking the property (5.5) yields

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ ηNt
x U(x̂∗

t (0), xt(0)) +
Nt−1∑
j=0

ηNt−j−1
x

(
|ŵ∗

t (j) − wt(j)|2Qx + |ŷ∗
t (j) − yt(j)|2Rx

)

+ V (p̂∗
t (Nt), pt(Nt))2 +

Nt−1∑
j=0

ηNt−j−1
x |p̂∗

t (j) − pt(j)|2Sx .
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From the bound (5.73) and application of the geometric series, we obtain that

V (p̂∗
t (Nt), pt(Nt))2 +

Nt−1∑
j=0

ηNt−j−1
x |p̂∗

t (j) − pt(j)|2Sx

≤ max{1, λmax(Sx, V )η−1
x }

Nt∑
j=0

ηNt−j
x V (p̂∗

t (j), pt(j))2.

From (5.74) and Jensen’s inequality, we further have that for each j ∈ I[0,Nt],

V (p̂∗
t (j), pt(j))2 ≤

(
V (p̂∗

t (0), pt(0)) +
Nt−1∑
i=0

|ŵ∗
t (i) − wt(i)|Qv

)2

≤ (Nt + 1)
(
V (p̂∗

t (0), pt(0))2 +
Nt−1∑
i=0

|ŵ∗
t (i) − wt(i)|2Qv

)
.

Combining the previous inequalities and using the geometric series, we obtain that

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ ηNt
x U(x̂∗

t (0), xt(0)) +
Nt−1∑
j=0

ηNt−j−1
x

(
|ŵ∗

t (j) − wt(j)|2Qx + |ŷ∗
t (j) − yt(j)|2Rx

)

+ c1(1, Nt)
(
V (p̂∗

t (0), pt(0))2 +
Nt−1∑
j=0

|ŵ∗
t (j) − wt(j)|2Qv

)

with c1(r, s) from (5.85). Using the fact that c1(1, s) ≥ 1 for all s ≥ 0, it follows
that

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ c1(1, Nt)
(
ηNt

x U(x̂∗
t (0), xt(0)) + V (p̂∗

t (0), pt(0))2

+
Nt−1∑
j=0

|ŵ∗
t (j) − wt(j)|2Qx+Qv + |ŷ∗

t (j) − yt(j)|2Rx

)
. (5.90)

By application of the bounds (5.4) and (5.73) together with Jensen’s inequality, we
obtain

U(x̂∗
t (0), xt(0)) ≤ |x̂∗

t (0) − xt(0)|2
P

≤ 2|x̂∗
t (0) − x̄(t−Nt)|2P + 2|x̄(t−Nt) − xt(0)2

P
,

(5.91)

and

V (p̂∗
t (0), pt(0))2 ≤ |p̂∗

t (0) − pt(0)|2
V

≤ 2|p̂∗
t (0) − p̄(t−Nt)|2V + 2|p̄(t−Nt) − pt(0)|2

V
.

(5.92)

Similarly, we have that

|ŵ∗
t (j) − wt(j)|2Q̃ ≤ 2|ŵ∗

t (j)|2Q̃ + 2|wt(j)|2Q̃ (5.93)
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for all j ∈ I[1,Nt] with Q̃ = Qx + Qv. Using (5.90)–(5.93) in (5.89), the facts that
ηNt−N ≥ 1 and c1(1, Nt) > 1, and the definition of the cost function (5.77) lets us
infer that

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ η−Nc1(1, N1)
(

2ηNt
x |x̄(t−Nt) − xt(0)|2

P
+ 2ηNt |p̄(t−Nt) − pt(0)|2

V

+
Nt−1∑
j=0

2|wt(j)|2Q + J(x̂∗
t , p̂

∗
t , ŵ

∗
t , ŷ

∗
t , t)

)
. (5.94)

By optimality, it follows that

J(x̂∗
t , p̂

∗
t , ŵ

∗
t , ŷ

∗
t , t) ≤ J(xt, pt, wt, yt, t)

≤ 2γ(Nt)|xt(0) − x̄(t−Nt)|2P + 2ηNt|pt(0) − p̄(t−Nt)|2V + 2
Nt−1∑
j=0

|wt(j)|2Q. (5.95)

Combining (5.94) and (5.95) and recalling the definitions in (5.86)–(5.88) yields
(5.84), which finishes this proof.

Lemma 5.4. Let Assumptions 5.1 and 5.4 be satisfied. Consider the MHE scheme
in (5.76) with the cost function in (5.77). Assume that at some time t ∈ I≥N ,
X(t) ∈ EN . Then, the corresponding estimates (5.81) satisfy

Γ(c, x̂(t), x(t), p̂(t), p(t)) ≤ µΓ(1, x̄(t−N), x(t−N), p̄(t−N), p(t−N))

+ 4c1(c,N) max{1, λmax(V , Sp)}
N∑

j=1
|w(t− j)|2Q (5.96)

with

µ := c1(c,N) max{1, λmax(V , Sp)} max
{
4λmax(P , P )γ(N), 2λmax(V , V )ηN

}
(5.97)

for all c ≥ 1.

Proof. We start by using the same arguments as in the beginning of the proof of
Lemma 5.3, which leads to

Γ(c, x̂(t), x(t), p̂(t), p(t)) = U(x̂∗
t (N), xt(N)) + cV (p̂∗

t (N), pt(N))2

≤ c1(c,N)
(
ηN

x U(x̂∗
t (0), xt(0)) + V (p̂∗

t (0), pt(0))2

+
N−1∑
j=0

|ŵ∗
t (j) − wt(j)|2Qx+Qv + |ŷ∗

t (j) − yt(j)|2Rx

)

with xt, pt, and wt defined in (5.86), (5.87), and (5.88), respectively. Note that
V (p̂∗

t (0), pt(0))2 ≤ λmax(V , Sp)|p̂∗
t (0) − pt(0)|2Sp , where

|p̂∗
t (0) − pt(0)|2Sp ≤ ηN

p |x̂∗
t (0) − xt(0)|2Pp +

N−1∑
j=0

|ŵ∗
t (j) − wt(j)|2Qp + |ŷ∗

t (j) − yt(j)|2Rp
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due to the fact that X(t) ∈ EN . Hence, we obtain

Γ(c, x̂(t), x(t), p̂(t), p(t))

≤ c1(c,N) max{1, λmax(V , Sp)}
(
ηN

x U(x̂∗
t (0), xt(0)) + ηN

p |x̂∗
t (0) − xt(0)|2Pp

+
N−1∑
j=0

|ŵ∗
t (j) − wt(j)|2Q + |ŷ∗

t (j) − yt(j)|2R
)
,

where we recall that Q = Qx + Qv + Qp and R = Rx + Rp. Using the definition of
γ from (5.78), the bounds from (5.91) and (5.93), and the cost function (5.77), we
have that

Γ(c, x̂(t), x(t), p̂(t), p(t))

≤ c1(c,N) max{1, λmax(V , Sp)}
(

2γ(N)|x̄(t−N) − xt(0)|2
P

+ 2
N−1∑
j=0

|wt(j)|2Q + J(x̂∗
t , p̂

∗
t , ŵ

∗
t , ŷ

∗
t , t)

)
.

Exploiting optimality as in (5.95), using the definition of µ from (5.97), and recalling
the definitions in (5.86)–(5.88) yields (5.96), which finishes this proof.

Now, let

ρ := η−Nc1(1, N)
(
2ηN

x + 2γ(N)
)
λmax(P , P ) (5.98)

and c be such that
c = 8c1(1, N)λmax(V , V )

1 − ρ
+ 2 (5.99)

with c1 from (5.85). The robustness guarantees for the MHE require that η,N are
chosen such that

max{µ, ρ} < 1. (5.100)

Note that this is always possible, since η satisfies condition (5.79) and c1 is dominated
by a factor that exponentially decreases with N .
Now, we divide the time interval [0, t] into sub-intervals (horizons) of length N
and the remainder l = t − ⌊t/N⌋N , essentially using a similar partitioning as in
Section 5.2.1 with (5.41). In comparison, however, the overall notation becomes
simpler here, as we do not have to consider any additional time discounting of
the disturbances. More specifically, we define the set of time instants at which the
corresponding MHE optimization problem was solved involving an excited trajectory
pair as

Tt :=
{
τ ∈ I[N,t] : t− τ =

⌊
t− τ

N

⌋
N, X(τ) ∈ EN

}
. (5.101)

By k ∈ I≥0, we denote the cardinality of Tt, i.e., k := |Tt|. Furthermore, we define
the sequence of times {tm}k+1

m=1 by t1 := max{τ ∈ Tt},

tm+1 := max{τ ∈ Tt : τ < tm}, m ∈ I[1,k−1],



5. Joint state and parameter estimation 147

and tk+1 := l, compare also Figure 5.1 for a visualization.
The following lemma establishes boundedness of the estimation error on [t1, t] and
a decrease in Lyapunov coordinates on each interval [tm+1, tm] for all m ∈ I[1,k].

Lemma 5.5. Let Assumptions 5.1 and 5.4 be satisfied. Consider the MHE scheme
in (5.76) with the cost function in (5.77). Suppose that η and N satisfy (5.100).
Then, there exist cQ,1, cQ,2 > 0 such that the estimates (5.81) satisfy the following
bounds:

Γ(1, x̂(t), x(t), p̂(t), p(t)) ≤ Γ(c, x̂(t1), x(t1), p̄(t1), p(t1)) + cQ,1

 t−1∑
r=t1

|w(r)|Q

2

(5.102)

and

Γ(c, x̂(tm), x(tm), p̂(tm), p(tm))

≤ µΓ(c, x̂(tm+1), x(tm+1), p̄(tm+1), p(tm+1)) + cQ,2

 tm−1∑
r=tm+1

|w(r)|Q

2

(5.103)

for all t ∈ I≥0, all m ∈ I[1,k], all initial states χ̂, χ ∈ X , all initial parameters
ξ̂, ξ ∈ P, and all sequences u ∈ U∞ and w ∈ W∞, where we recall that tk+1 = l for
any k ∈ I≥0.

Proof. We start with the bound (5.102). Let j denote the number of insufficiently
excited horizons that occurred between time t and t1, i.e., j := (t − t1)/N . First,
assume that j ∈ I≥1. From Lemma 5.3, the fact that |x̄(t − N) − x(t − N)|2

P
≤

λmax(P , P )U(x̄t−N , xt−N) by (5.4), and the definition of ρ from (5.98), we obtain

Γ(1, x̂(t), x(t), p̂(t), p(t))

≤ ρU(x̄(t−N), x(t−N)) + c′
1|p̄(t−N) − p(t−N)|2

V
+ c′

1η
−N

t−1∑
r=t−N

|w(r)|2Q

with c′
1 = 4c1(1, N), and where ρ satisfies ρ < 1 due to satisfaction of (5.100). Note

that x̄(t−N) = x̂(t−N) and p̄(t−N) satisfies the update rule (5.80), which implies
that p̄(t − qN) = g((j−q)N)(p̄(t − jN)) for all q ∈ [0, j] and t − jN = t1. From
Assumption 5.4 and Jensen’s inequality, it further follows that

V (p̄(t− qN), p(t− qN))2 ≤ 2V (p̄(t1), p(t1))2 + 2
t−qN−1∑

r=t1

|w(r)|Qv

2

. (5.104)

Combined, we can write that

Γ(1, x̂(t), x(t), p̂(t), p(t)) ≤ ρU(x̄(t−N), x(t−N)) + 2c′
1λmax(V , V )V (p̄(t1), p(t1))2

+ c′
1 max{2λmax(V , V ), η−N}

 t−1∑
r=t1

|w(r)|Q

2

. (5.105)
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Since

U(x̂(t−N), x(t−N)) ≤ Γ(1, x̂(t−N), x(t−N), p̂(t−N), p(t−N))

by (5.83), we can recursively apply (5.105) for j times, which by exploiting the
geometric series yields

Γ1(t, x̂(t), x(t), p̂(t), p(t)) ≤ ρjU(x̂(t1), x(t1)) + 2c′
1λmax(V , V )

1 − ρ
V (p̄(t1), p(t1))2

+ c′
1 max{2λmax(V , V ), η−N}

1 − ρ

 t−1∑
r=t1

|w(r)|Q

2

.

(5.106)

By (5.99), we have that 2c′
1λmax(V , V )/(1 − ρ) < c, leading to (5.102) with cQ,1 =

c′
1 max{2λmax(V , V ), η−N}/(1 − ρ), and we note that (5.102) holds for any j ∈ I≥0.

It remains to establish the bound (5.103). Assume that k ∈ I≥1. Then, t1 corre-
sponds to the most recent horizon where X(t1) ∈ EN . We can invoke Lemma 5.4,
which yields

Γ(c, x̂(t1), x(t1), p̂(t1), p(t1)) ≤ µΓ(1, x̄(t1 −N), x(t1 −N), p̄(t1 −N), p(t1 −N))

+ 4c1(c,N) max{1, λmax(V , Sp)}
t1−1∑

r=t1−N

|w(r)|2Q.

(5.107)

We further have that

Γ(1, x̄(t1 −N), x(t1 −N), p̄(t1 −N), p(t1 −N))
= U(x̄(t1 −N), x(t1 −N)) + V (p̄(t1 −N), z(t1 −N))2

≤ Γ(1, x̂(t1 −N), x(t1 −N), p̂(t1 −N), p(t1 −N)) + V (p̄(t1 −N), p(t1 −N))2

≤ Γ(1, x̂(t1 −N), x(t1 −N), p̂(t1 −N), p(t1 −N))

+ 2V (p̄(t2), pt2)2 + 2
t1−N−1∑

r=t2

|w(r)|Qv

2

, (5.108)

where in the latter inequality we have used similar arguments that were applied to
derive (5.104). Adapting the arguments applied to derive (5.106), we have that

Γ(1, x̂(t1 −N), x(t1 −N), p̂(t1 −N), p(t1 −N))

≤ U(x̂(t2), x(t2)) + 2c′
1λmax(V , V )

1 − ρ
V (p̄(t2), p(t2))2

+ c′
1 max{2λmax(V , V ), η−N}

1 − ρ

t1−N−1∑
r=t2

|w(r)|Q

2

, (5.109)

where we have used that ρs ≤ 1 for all s ∈ I≥0. The combination of (5.107)–(5.109)
(which also hold with t1 and t2 replaced by tm and tm+1 for each m ∈ I[1,k]) and
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using the definition of c from (5.99) leads to (5.103), where

cQ,2 := max
µ

(
c′

1 max{2λmax(V , V ), η−N}
1 − ρ

+ 2
)
, 4c1(c,N) max{1, λmax(V , Sp)}

,
which finishes this proof.

We now combine the properties provided by Lemma 5.5 and establish a bound on
the overall state and parameter estimation error in terms of the initial errors and
the past disturbances that occurred in the interval I[0,t−1].

Theorem 5.2. Let Assumptions 5.1 and 5.4 be satisfied. Consider the MHE scheme
in (5.76) with the cost function in (5.77). Suppose that η and N satisfy (5.100).
Then, the estimates (5.81) satisfy

C0|x̂(t) − x(t)|P + C0|p̂(t) − p(t)|V

≤ √
µk
(√

C1
√
η̃

l|χ̂− χ|P +
√
C2

√
ηl|ξ̂ − ξ|V

)

+ √
µk

l−1∑
r=0

|w(r)|Q3 +
k∑

m=1

√
µm−1

tm−1∑
r=tm+1

|w(r)|Q3 +
t−1∑
r=t1

|w(r)|Q3 (5.110)

for all t ∈ I≥0, all initial states χ̂, χ ∈ X , all initial parameters ξ̂, ξ ∈ P, and all
sequences u ∈ U∞ and w ∈ W∞, where η̃ := max{ηx, ηp}, C0 :=

√
2/2, and

C1 := 2η−Nc1(1, N)(2 + λmax(Pp, P )), (5.111)
C2 := (4c1(1, N) + 2c)η−N , (5.112)
Q3 := max{cQ,1, cQ,2, (4c1(1, N)η−N + 2c)}Q. (5.113)

Before proving Theorem 5.2, we want to highlight the key properties of the resulting
bound on the estimation errors.

• The bound in (5.110) is valid independent of the parameter excitation, and
it improves the more often the excitation condition (5.80) is satisfied during
operation.

• If k → ∞ for t → ∞, then the state and parameter estimation error e(t) as
defined in (5.82) converges to a ball centered at the origin with the radius
defined by the energy of the true disturbance sequence. If additionally w(t) →
0 for t → ∞, then e(t) → 0.

• If t−t1 and tm+1 −tm can be uniformly bounded for all times, then the estima-
tion error converges exponentially, which follows by using similar arguments
as in Corollary 5.1.

• In contrast to our results for constant parameters in Section 5.2, the bound
in (5.110) involves the (non-discounted) sum of disturbances w(r) over r ∈
I[t1,t], which can be interpreted as the energy of the corresponding disturbance
subsequence {w(r)}t

r=t1 . This is due to the fact that for trajectories that are
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insufficiently excited in some interval, we use the nominal dynamics of (5.1b) to
predict the evolution of p(t) and invoke Assumption 5.4 to bound the current
parameter estimation error |ep(t)|. Hence, no qualitatively better error bound
can be expected without further assumptions on the dynamics (5.1b), the
disturbance w, or satisfaction of the excitation condition (5.80).

Proof of Theorem 5.2. The claim follows by combining the bounds from Lemma 5.5
and invoking Assumption 5.4 for l ∈ I[0,N−1]. First, suppose that k ∈ I≥1 and note
that p̄(tm) = p̂(tm) for all m ∈ I[1,k]. Hence, the recursive application of (5.103) and
the fact that tk+1 = l yield

Γ(c, x̂(t1), x(t1), p̄(t1), p(t1))

≤ µkΓ(c, x̂(l), x(l), p̄(l), p(l)) +
k∑

m=1
µm−1

cQ,2

tm−1∑
r=tm+1

|w(r)|Q

2

, (5.114)

which is valid for all k ≥ 0 (in case k = 0, we have t1 = l). For l ∈ I[0,N−1], it follows
that

Γ(c, x̂(l), x(l), p̄(l), p(l)) = U(x̂(l), x(l)) + cV (p̄(l), p(l))2

≤ Γ(1, x̂(l), x(l), p̂(l), p(l)) + cV (p̄(l), p(l))2. (5.115)

By using Lemma 5.3 with x̄(0) = χ̂ and p̄(0) = ξ̂, we obtain

Γ(1, x̂(l), x(l), p̂(l), p(l)) ≤ c1(1, N)η−N(2ηl
x + 2γ(l))|χ̂− χ|2

P

+ c′
1η

−Nηl|ξ̂ − ξ|2
V

+ c′
1η

−N
l−1∑
r=0

|w(r)|2Q, (5.116)

where we have used the definition c′
1 = 4c1(1, N) together with the facts that l < N

and c1(1, s) < c1(1, N) for all s ∈ [0, N − 1]. By Assumption 5.4, the facts that
p̄l = g(l)(p̄(0)) and p̄(0) = ξ̂, and Jensen’s inequality, it further follows that

V (p̄(l), p(l))2 ≤ 2V (ξ̂, ξ)2 + 2
(

l−1∑
r=0

|w(r)|Qv

)2

. (5.117)

From (5.115)–(5.117) and the definitions of γ, C1, and C2 from (5.78), (5.111),
and (5.112), respectively, we can infer that

Γ(c, x̂(l), x(l), p̄(l), p(l)) ≤ C1η̃
l|χ̂− χ|2

P
+ C2η

l|ξ̂ − ξ|2
V

+ (c′
1η

−N + 2c)
(

l−1∑
r=0

|w(r)|Q
)2

. (5.118)

Combining (5.102), (5.114), and (5.118), using the definition of Q3 from (5.113),
applying the square root (which is concave and subadditive on R≥0), and Jensen’s
inequality finally leads to (5.110). Since (5.110) holds for any l ∈ I[0,N−1] and k ∈ I≥0,
it holds for all t ∈ I≥0, which finishes this proof.
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5.3.3. Numerical example

To illustrate our results, we consider the following system

x+
1 = x1 + t∆b1(x2 − a1x1 − a2x

2
1 − px3

1) + w1,

x+
2 = x2 + t∆(x1 − x2 + x3) + w2,

x+
3 = x3 − t∆b2x2 + w3,

p+ = p+ w4,

y = x1 + w5.

This corresponds to the perturbed modified Chua’s circuit system from Section 5.2.4,
where we additionally assume that the parameter p(t) is time-variant and subject
to an unknown disturbance input w4(t). Note that from the system description it
is immediately apparent that the observability of p(t) depends on the magnitude
of x1(t), compare also Figure 5.2 and the respective discussion in Section 5.2.4.
The parameters are b1 = 12.8, b2 = 19.1, a1 = 0.6, a2 = −1.1. The distur-
bances wi, i = 1, 2, 3, 5 are uniformly distributed with |wi(t)| ≤ 10−3, i = 1, 2, 3
for the process disturbance, and |w5(t)| ≤ 5 · 10−2 for the measurement noise for
all t ∈ I≥0. The disturbance w4 consists of two superimposed square waves such
that w4(t) ∈ {−10−4, 0, 10−4}, t ∈ I≥0, compare the red curve in Figure 5.7 be-
low. We consider the initial conditions χ = [2, 0,−1]⊤ and ξ = 0.45 and assume
that x(t) and p(t) evolve in the (known) sets X = [−1, 3] × [−1, 1] × [−3, 3] and
P = [0.2, 0.8]. The objective is to compute the state and parameter estimates x̂(t)
and p̂(t) by applying the MHE scheme proposed in Section 5.3.1 using the initial
estimates χ̂ = [−1, 0.1, 2]⊤ and ξ̂ = 0.6.
Assumption 5.4 is satisfied with the function V (p1, p2) = |p1 − p2| and matrix
Qv = B⊤

p Bp using Bp = [0, 0, 0, 1, 0]. We compute a quadratic i-IOSS Lyapunov
function U(x1, x2) = |x1 − x2|2Px , Px ≻ 0 by adapting the verification method
from Section 7.1.1, compare Section 5.2.4. To monitor the excitation of trajec-
tory pairs, we evaluate at each time t ∈ I≥0 the matrix OT (Z∗

t ) in (7.93) at the
currently optimal solution Z∗

t =
(
x̂∗

t (0), p∗
t (0), {ŵ∗

t (t)}Nt−1
j=0

)
, see Section 7.2.2 for

more details. Here, we consider a trajectory pair X(t) to be sufficiently excited if
αt = λmin(ONt(Z∗

t )) ≥ α = 5 · 10−4.
Tuning the cost function (5.77) based on the parameters of U , V , and the set ET

yields a minimum required horizon length Nmin ≈ 300. This is rather conservative
due to conservative steps in the proofs (in particular, Lemmas 5.3 and 5.4), and good
performance is obtained using a smaller horizon length. To illustrate the potential
of the proposed MHE scheme, we choose N = 200 and η = 0.9, γ(s) = ηs, P = I2,
V = 1, Q = 107I4, R = 103, although these invalidate the theoretical guarantees
established in Section 5.3.2. Furthermore, we update p̂(t) only if X(t) ∈ ENt ,
compare Remark 5.2.
The simulations are carried out in Matlab over tsim = 4000 time steps. The estima-
tion error of the proposed scheme is shown in Figure 5.6, which shows fast conver-
gence of the estimation errors. This is also evident in Figure 5.7, which illustrates
the respective estimated parameter p̂(t) over time. In phases without sufficiently
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Figure 5.6. Estimation errors |ex(t)| (red) and |ep(t)| (blue) for the proposed MHE scheme
compared to |ep(t)| for MHE without excitation monitoring (cyan).

Figure 5.7. Estimates p̂(t) for the proposed MHE scheme (blue) compared to MHE without
excitation monitoring (cyan) and the true parameter p(t) (red).

high excitation levels (αt ≪ α, see Figure 5.8), the proposed MHE scheme is not
able to track the true parameter p(t) (which is clear due to the lack of information).
However, it still provides estimates with bounded errors that are much smaller com-
pared to using MHE without excitation monitoring (see the cyan-colored curve in
Figures 5.6 and 5.7).
This simulation example illustrates the efficiency of the proposed MHE scheme from
Section 5.3. When p(t) is observable from data, it is able to robustly track the true
parameter. If it is unobservable, it reacts appropriately to prevent the estimation
error from deteriorating arbitrarily.
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Figure 5.8. Excitation level αt; values above the red line indicate sufficient excitation.

5.4. Summary

In this chapter, we proposed MHE schemes for joint state and parameter estimation
that are applicable to general nonlinear systems, particularly tailored for parameters
that may suffer from insufficient excitation. Specifically, the cost function involves
an adaptive regularization term that is adjusted according to real-time excitation
information, where we rely on the excitation monitoring techniques developed in
Section 7.2. We first considered the case of constant parameters and derived a
bound for the state and parameter estimation error that is valid regardless of ex-
citation of the parameter, and in particular also applies if the parameter is never
or only rarely excited during operation. In the general case without excitation, our
result constitutes a bounded-disturbance bounded-estimation-error property, which
is qualitatively the best result that can be expected without additional specifica-
tions for the excitation or setup. The derived bound improves with respect to the
initial estimates the more often the parameter is detected to be sufficiently excited.
Moreover, if the time between two PE intervals occurred during online operation can
be uniformly bounded, our result specializes to RGES, i.e., it implies exponential
convergence of the state and parameter estimation error to a neighborhood around
the origin defined by the true disturbances. Note that although this requires some a
priori knowledge about PE, it is still weaker than the standard uniform PE condi-
tion. For the latter case, we showed that uniform PE is equivalent to the existence
of a joint i-IOSS Lyapunov function for the augmented state vector consisting of the
states and the system parameters. This establishes the intuitive implication that
state detectability plus uniform PE of the parameter is equivalent to the augmented
system being uniformly detectable, which renders standard MHE methods for state
estimation applicable.
We extended our results to the more general case of time-varying parameters, which
additionally involved an incremental UBEBS property of the parameter dynamics in
order to provide bounded estimation errors. This is naturally required to ensure that
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arbitrary parameter drifts cannot cause the estimation error to become unstable in
case the parameter is unobservable.
The numerical examples illustrated that the proposed MHE schemes in combina-
tion with the PE monitoring techniques from Section 7.2 are able to efficiently
compensate for phases of weak excitation. For both constant and time-varying pa-
rameters, we obtained reliable estimation results for all times, which in particular
were prevented from deteriorating arbitrarily in phases without excitation, while
being accurate in phases with sufficient excitation.



6. Turnpike analysis and
performance guarantees

In this chapter, we investigate the turnpike phenomenon in optimal state estima-
tion problems using tools from optimal control, and leverage the insights gained to
develop novel accuracy, performance, and regret guarantees for MHE.
We start by formalizing the setup in Section 6.1, which includes some structural
differences and generalizations to previously considered MHE formulations. We
define a particular benchmark for MHE, namely the omniscient infinite-horizon op-
timal state estimator, which has access to all past and future measurements. In
Section 6.2, we discuss and analyze the turnpike behavior of MHE problems with
respect to this benchmark in detail, leading to new insights into optimal state es-
timation. These are exploited in Section 6.3, where we propose a slightly modified
variant of MHE involving an additional delay and derive corresponding performance
and regret guarantees with respect to the benchmark estimator. In Section 6.4, we
illustrate the results in terms of various numerical examples from the literature,
which show that the proposed modifications can significantly improve the estima-
tion results in practice.
Disclosure: The following chapter is based upon and in parts literally taken from
our previous publications [SGM24] and [SGM25]. A detailed description of the
contributions of each author is given in Appendix A.

6.1. Setup

System description

In this chapter, we focus on nonlinear uncertain discrete-time systems of the follow-
ing form:

x(t+ 1) = f(x(t), u(t), d(t)), x(0) = χ, (6.1a)
y(t) = h(x(t), u(t)) + v(t) (6.1b)

with discrete time t ∈ I≥0, state x(t) ∈ Rn, initial condition χ ∈ Rn, control input
u(t) ∈ Rm, (unknown) process disturbance d(t) ∈ Rq, (unknown) measurement noise
v(t) ∈ Rp, and output measurement y(t) ∈ Rp. The functions f : Rn×Rm×Rq → Rn

and h : Rn × Rm → Rp define the system dynamics and output equation, which we
assume to be continuous.
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Remark 6.1 (System description). Note that we consider additive measurement noise
in (6.1b), which corresponds to a special case of the output equation usually con-
sidered throughout this thesis, compare Section 3.1 and see also Section 2.2.2 for
a detailed discussion on this topic. Here, this facilitates the analysis as it directly
allows us to gain intuition from standard optimal control theory. However, we con-
jecture that the results presented below can be extended to the more general case of
nonlinear measurement noise, and the derivation of the formal proofs is an interest-
ing topic for future work. However, we want to emphasize that the case of additive
measurement noise is actually frequently assumed in MHE theory (see, e.g., [ABB08;
RMD20; Mül17; AR19b; All20; Hu24] and compare also Remark 3.1) and moreover
is usually considered in practice, see, e.g., [HCE18; Els+21; Liu+17; Bre19; CLH22;
Kle+23].

In the following, we assume that trajectories of the system (6.1) satisfy

(x(t), u(t), d(t), v(t)) ∈ X × U × D × V , t ∈ I≥0 (6.2)

for some known sets X ⊆ Rn, U ⊆ Rm, D ⊆ Rq (where 0 ∈ D), and V ⊆ Rp, and
furthermore, that

(x, u, d) ∈ X × U × D ⇒ f(x, u, d) ∈ X . (6.3)

Such knowledge typically arises from the physical nature of the system (e.g., non-
negativity of certain physical quantities such as partial pressure or absolute temper-
ature), the incorporation of which can significantly improve the estimation results,
see [RMD20, Sec. 4.4] and compare also Section 3.1 for more details.

The optimal state estimation problem

MHE generally relies on the repeated solution of optimal state estimation problems,
compare, for example, Section 3.1. In the following, we study such schemes through
the lens of optimization theory, and in particular interpret the optimal estimation
problem as a graph-structured NLP that is parameterized by the data provided to
the NLP. We now revisit the principles of MHE in this context.
For ease of notation, we define the input-output data (or parameter) tuple D(t) :=
(u(t), y(t)) obtained from the system (6.1) at time t ∈ I≥0. Now, consider a given
batch of input-output data D = {D(j)}N

j=0 of length N + 1 for some N ∈ I≥0.
We aim to compute the state sequence x̂ = {x̂(j)}N

j=0 along with the disturbance
input sequences d̂ = {d̂(j)}N−1

j=0 that are optimal in the sense that they minimize a
cost function involving the full data set D. In particular, we consider the following
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optimal state estimation problem

PN(D) : min
x̂,d̂

JN(x̂, d̂;D) (6.4a)

s.t. x̂(j + 1) = f(x̂(j), u(j), d̂(j)), j ∈ I[0,N−1], (6.4b)
x̂(j) ∈ X , j ∈ I[0,N ], (6.4c)
d̂(j) ∈ D, j ∈ I[0,N−1], (6.4d)
y(j) − h(x̂(j), u(j)) ∈ V , j ∈ I[0,N ]. (6.4e)

For convenience, we define the combined sequence ẑ = {ẑ(j)}N
j=0 containing both de-

cision variables x̂ and d̂ as ẑ(j) := (x̂(j), d̂(j)) for j ∈ I[0,N−1] and ẑ(N) := (x̂(N), 0).
The constraints (6.4b)–(6.4e) enforce the prior knowledge about the system model,
the domain of the true trajectories, and the disturbances and noise (note that fea-
sibility is always guaranteed due to our standing assumptions).
In (6.4a), we find it convenient to emphasize the dependency of the cost function
JN used in (6.4a) on the data set D and the horizon length N , which is a slightly
different notation than the one we usually employ in this thesis, compare, e.g., (3.4b)
in Section 3.1. In particular, we define

JN(x̂, d̂;D) :=
N−1∑
j=0

L(x̂(j), d̂(j);D(j)) + Ltc(x̂(N);D(N)) (6.5)

with continuous stage cost L : X ×D×U ×Rp → R≥0 and terminal cost Ltc : X ×U ×
Rp → R≥0. We point out that this is a generalization of classical designs for state
estimation, where L and Ltc are positive definite in the disturbance input d̂ and the
fitting error y − h(x̂, u) for all x̂ ∈ X , d̂ ∈ D, u ∈ U , and y ∈ Rp, compare [RMD20,
Ch. 4] and see also Section 3.1; it particularly includes the practically relevant case
of quadratic stage and terminal cost

L(x, d; (u, y)) = |d|2Q + |y − h(x, u)|2R (6.6)

and
Ltc(x; (u, y)) = |y − h(x, u)|2S, (6.7)

respectively, where Q,R, S are positive definite weighting matrices. However, our
results also hold for more general cost functions L and Ltc, which allow the objec-
tive (6.5) to be tailored to the specific problem at hand. Note that cost functions
with an additional prior weighting in (6.5) (as usual in MHE, compare Section 3.1)
are considered in Section 6.3.3.
In the state estimation context, a cost function with terminal cost as in (6.7) is
usually referred to as the filtering form of the state estimation problem. To simplify
the analysis and notation, the most recent works on FIE/MHE theory often consider
a cost function with Ltc = 0 (i.e., without terminal cost), which corresponds to the
prediction form of the state estimation problem, compare Section 3.1 and [Sch+23;
KM23; AR21; Hu24], and see also [RMD20, Ch. 4] for a discussion on this topic.
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The optimization problem PN in (6.4) is a parametric NLP, the solution of which
solely depends on the (input-output) data provided, that is, the sequence D. We
characterize solutions to PN using the generic solution mapping ζN :

ẑ∗(j) := ζN(j,D), j ∈ I[0,N ], (6.8)

which yields the value function VN(D) = JN(ẑ∗;D) where ẑ∗ = {ẑ∗(j)}N
j=0. While

the function ζN returns a pair of optimal state and disturbance input, we use ζx
N to

refer only to the optimal state of this pair, so that x̂∗(j) = ζx
N(j,D) for all j ∈ I[0,N ].

Remark 6.2 (Existence of solutions to PN). Throughout the following, we assume
that whenever we employ the solution mapping ζN , the corresponding solution exists.
Note that under continuity of f and h in (6.1), this can generally be guaranteed by
choosing the stage cost L and terminal cost Ltc such that the cost function JN is
radially unbounded in the (condensed) decision variables (which requires positive def-
initeness of L and Ltc and observability1 of the system with a corresponding horizon
length N , compare [RMD20, Sec. 4.3.1]), or under compactness of the sets X and
D, see [RMD20, Prop. A.7].

Remark 6.3 (Discounting). We use a non-discounted cost function in (6.5), which
is conceptually different from most of the MHE formulations considered in this the-
sis, compare Section 3.1 and the discussion in Section 3.3. This is because, in this
chapter, we are not interested in deriving robust stability of MHE (where discounting
plays a crucial role), but in performance estimates and regret bounds with respect to
a particular benchmark solution. As this is a novel approach, we consider here the
case of non-discounted costs, which simplifies the analysis. Extending our results pre-
sented below to cost functions with discounting (i.e, where the sum in (6.5) contains
an additional term ηN−j for some discount factor η ∈ (0, 1)) constitutes an interest-
ing topic for future work, which may be addressed by using similar arguments as in
the context of discounted economic MPC, compare, for example, [GKW16; Grü+21;
ZG22], see Chapter 8 for more details.

Benchmark solution

We are interested in how the optimal solution defined by (6.8) compares to a cer-
tain (challenging) benchmark problem. For this purpose, we interpret the data
sequence D as a segment of an infinite data sequence D∞ = {D∞(j)}∞

j=−∞ such
that D∞(j) = D(j), j ∈ I[0,N ], where D∞ contains all past and future data that
could possibly be generated by the system (6.1) in the interval I. Then, we con-
sider the omniscient infinite-horizon estimator, that is, the solution of the (acausal)
infinite-horizon optimal state estimation problem

P∞(D∞) : min
ẑ

∞∑
j=−∞

L(ẑ(j), d̂(j);D∞(j)) s.t. (6.4b)–(6.4e), j ∈ I, (6.9)

1Observability is required here because the cost function JN does not contain an additional prior
weighting as is the case in, e.g., Section 3.1; the case of MHE with prior weighting, which does
not require observability, is considered in Section 6.3.3 below.
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where ẑ(j) = (x̂(j), d̂(j)), j ∈ I. We denote the solution to P∞(D∞) by the infinite
sequence z∞ := {z∞(j)}∞

j=−∞ with z∞(j) = (x∞(j), d∞(j)), j ∈ I, where we assume
that z∞ exists and is unique for any possible D∞, compare Remark 6.2.
Note that in linear settings [SH22; BDF23], a common benchmark for observers
estimating the state x(t) at some time t ∈ I≥0 is the clairvoyant acausal observer
relying on data from the interval I[0,∞), where in particular data from I[t+1,∞) is
only fictitious (as it depends on future disturbances and noise) and may or may
not actually be measured at a future point in time (e.g., if the experiment is ter-
minated). We adopt this approach and take it even further by assuming that our
benchmark—the omniscient infinite-horizon estimator—can not only predict the fu-
ture (knowing data from I[t+1,∞)), but also has a perfect memory (knowing data
from I(−∞,−1]).
In the following section, we will investigate how the solution ẑ∗ in (6.8) behaves
compared to the benchmark z∞ on the common domain of existence, i.e., the inter-
val I[0,N ]. In particular, we show that solutions of the finite-horizon problem PN(D)
exhibit the turnpike phenomenon with respect to the solution of the infinite-horizon
problem P∞(D∞) (Section 6.2), which we then employ to construct (causal) estima-
tors that provide performance guarantees and bounded regret with respect to this
benchmark (Section 6.3).

6.2. Turnpike in optimal state estimation problems

Optimal state estimation problems (such as PN in (6.4)) can generally be interpreted
as optimal control problems using the disturbance d̂ as the control input (compare
also [RMD20, Sec. 4.2.3] and [All20, Sec. 4]). In particular, a cost function (6.5)
that is positive definite in the estimated disturbance and the fitting error (as, e.g.,
in (6.6) and (6.7)) can be regarded as an economic output tracking cost, penalizing
deviations from the ideal reference (dr(j), yr(j)) = (0, y(j)), j ∈ I[0,N ]. This refer-
ence, however, is generally unreachable, as it is usually impossible to attain zero
cost VN(D) = 0, except for the special case where y(j), j ∈ I[0,N ] corresponds to
an output sequence of (6.1) under zero disturbances, i.e., d, v ≡ 0. For unreachable
references, on the other hand, it is known that the corresponding optimal control
problem exhibits the turnpike property with respect to the best reachable refer-
ence [KMA19], which suggests that a similar phenomenon can also be expected in
optimal state estimation problems.
In Section 6.2.1, we provide a simple motivating example that supports this intu-
ition. Then, we consider two mathematical characterizations of the turnpike phe-
nomenon and provide corresponding sufficient conditions that rely on strict dissi-
pativity (Section 6.2.2) and decaying sensitivity (Section 6.2.3). For the latter, we
show in Section 6.2.4 how this is naturally satisfied in the linear quadratic setting
using standard optimal control and Riccati theory. In Section 6.2.5, we discuss the
considered turnpike characterizations with regard to their properties and limitations
and introduce a general turnpike definition that combines their advantages.
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Figure 6.1. Difference between the solution x∞ of the infinite-horizon problem P∞ and
solutions x̂∗ of the finite-horizon problem PN for different values of N .

6.2.1. Motivating example

Suppose that some output data y = {y(j)}T
j=0 for T = 30 is measured from the sys-

tem x(t+1) = x(t)+d(t) with x(0) = 1 and y(t) = x(t)+v(t), where d(t) = v(t) = 1
for all t ∈ I. We consider the finite-horizon optimal estimation problem PN(D) with
D = {D(j)}N

j=0 = {y(j)}N
j=0, the quadratic stage and terminal cost (6.6) and (6.7)

using Q = R = S = 1, and different values of N . For the benchmark estimator, we
also consider the infinite-horizon problem P∞(D∞), which we approximate by simu-
lating the system and computing the solution on some extended interval I[−Te,T +Te],
where we choose Te such that the solution does not change (up to numerical accu-
racy) on I[0,T ] if Te is further increased.
Figure 6.1 shows the difference between the infinite-horizon solution x∞(j) and the
solution of the finite-horizon problem x̂∗(j) for j ∈ I[0,N ] and different values of N .
One can clearly see that the benchmark x∞ serves as turnpike for the solution x̂∗.
In particular, we find that x̂∗ is constructed from three pieces: an initial transient
where x̂∗ converges to the turnpike x∞, a large phase where x̂∗ stays near the
turnpike x∞, and a transient at the end of the horizon where x̂∗ diverges from
the turnpike x∞. Figure 6.1 also indicates that these transients2 are independent of
the horizon length N . Note that a similar behavior could also be observed for the
disturbance difference d̂∗(j) − d∞(j), j ∈ I[0,N−1].
In the following sections, we provide and discuss different mathematical character-
izations of the turnpike phenomenon observed in this motivating example, relying
on strict dissipativity and decaying sensitivity.

2In the turnpike-related literature, the left transient is usually referred to as the approaching arc
(or entry arc), and the right transient as the leaving arc, compare [FG22].
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6.2.2. Turnpike under strict dissipativity

Motivated by the literature on nonlinear optimal control and economic MPC, we
first consider a strict dissipativity condition. Here, we focus on the terminal cost
Ltc(x; (u, y)) = 0 to simplify the analysis.

Assumption 6.1 (Strict dissipativity). Consider an infinite data sequence D∞ as-
sociated with the system (6.1) and the solution z∞ of the infinite-horizon problem
P∞(D∞) from (6.9). The finite-horizon problem PN(D) in (6.4) for N ∈ I≥0 and
the truncated data set D = {D(j)}N

j=0 with D(j) = D∞(j), j ∈ I[0,N ] is strictly
dissipative with respect to the supply rate

s(j, x, d) = L(x, d;D(j)) − L(x∞(j), d∞(j);D(j)), j ∈ I[0,N−1], (6.10)

i.e., there exists a time-varying storage function λ : I × X → R and α ∈ K∞ such
that

λ(j + 1, f(x, u(j), d)) − λ(j, x) ≤ −α(|z − z∞(j)|) + s(j, x, d) (6.11)

for all j ∈ I[0,N ] and all z = (x, d) ∈ X × D. Moreover, there exists αλ ∈ K∞ such
that |λ(j, x)| ≤ αλ(|x− x∞(j)|) uniformly for all j ∈ I[0,N ].

Strict dissipativity is a standard assumption in the context of (economic) model pre-
dictive control, usually employed to establish turnpike behavior of open-loop optimal
control problems and obtain stability and performance guarantees of the resulting
closed loop, see, e.g., [FGM18; GP19; KMA19]. Here, we define strict dissipativity
using a time-varying storage function and supply rate involving the (time-varying)
infinite-horizon solution z∞, compare [GPS18, Def. 6] for a time-varying setup in
the context of optimal control and see also the discussion in Section 6.2.5. The
upper bound on the storage function λ provides an additional continuity property
with respect to the infinite-horizon solution.
The following result shows that under strict dissipativity (in the sense of Assump-
tion 6.1), the solutions of the finite-horizon problems PN are close to the optimal
solution of the infinite-horizon problem P∞ for most of the time, which hence con-
stitutes the turnpike associated with the optimal estimation problem.

Theorem 6.1. Let X be compact and suppose that Assumption 6.1 is satisfied. Con-
sider the infinite-horizon solution z∞ for some data set D∞ associated with the
system (6.1). Then, there exists σ ∈ L such that for all Q ∈ I[0,N ], at least Q
points j ∈ I[0,N−1] of the solution ẑ∗(j) = ζN(j,D) using the truncated data set
D = {D(j)}N

j=0 with D(j) = D∞(j), j ∈ I[0,N ] satisfy

|ẑ∗(j) − z∞(j)| ≤ σ(N −Q) (6.12)

for all N ∈ I≥0 and all possible data D∞.
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Proof. We consider the rotated stage cost

Lrot(j, x, d) := L(x, d;D(j)) − L(x∞(j), d∞(j);D(j))
+ λ(j, x) − λ(j + 1, f(x, u(j), d))

for all j ∈ I[0,N−1] and any point z = (x, d) ∈ X × D. From strict dissipativity
(Assumption 6.1), we know that

Lrot(j, x, d) ≥ α(|z − z∞(j)|), j ∈ I[0,N−1], (6.13)

which implies that the rotated stage cost is positive definite with respect to the
difference |z − z∞(j)| for all j ∈ I[0,N−1] and any z ∈ X × D.
Now consider some N ∈ I≥0 and the solution ẑ∗(j) = ζN(j, d), j ∈ I[0,N ]. Evaluating
the rotated cost function along ẑ∗ yields

N−1∑
j=0

Lrot(j, x̂∗(j), d̂∗(j)) =
N−1∑
j=0

L(x̂∗(j), d̂∗(j);D(j)) − L(x∞(j), d∞(j);D(j))

+ λ(0, x̂∗(0)) − λ(N, x̂∗(N)).

The application of (6.13) then leads to
N−1∑
j=0

L(x̂∗(j), d̂∗(j);D(j)) − L(x∞(j), d∞(j);D(j))

≥ λ(N, x̂∗(N)) − λ(0, x̂∗(0)) +
N−1∑
j=0

α(|ẑ∗(j) − z∞(j)|). (6.14)

Due to the fact that X is compact and the storage function is bounded (Assump-
tion 6.1), we can define Cλ := max

x1,x2∈X
αλ(|x1 − x2|) such that |λ(j, x)| ≤ Cλ for all

j ∈ I[0,N ] and all x ∈ X . We claim that the turnpike property holds with

σ(r) = α−1
(2Cλ

r

)
. (6.15)

For the sake of contradiction, suppose not. Then, at leastN−Q+1 points j ∈ I[0,N−1]
satisfy |ẑ∗(j) − z∞(j)| > σ(N −Q). Hence, from (6.14) it follows that
N−1∑
j=0

L(x̂∗(j), d̂∗(j);D(j)) − L(x∞(j), d∞(j);D(j)) > −2Cλ + (N −Q)α(σ(N −Q))

= 0, (6.16)

where the last equality follows from (6.15). However, (6.16) contradicts optimality
of ẑ∗ since it generally must hold that

N−1∑
j=0

L(x̂∗(j), d̂∗(j);D(j)) − L(x∞(j), d∞(j);D(j)) = VN(D) − JN

(
{z∞(j)}N

j=0;D
)

≤ 0,

which proves our claim.
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Remark 6.4 (Relation to the literature). Theorem 6.1 and its proof follow the lines
of classical turnpike results in the context of (receding horizon) optimal control, see,
e.g., [GPS18, Th. 1]. However, because the initial state is free in the estimation
problem and not fixed as typical in control, we can avoid the need for an additional
reachability/controllability property to bound the value function VN(D), simply by
exploiting the fact that the trajectory z∞ truncated to the interval I[0,N ] is a feasible
candidate solution.

6.2.3. Turnpike under decaying sensitivity

In the previous section, we established turnpike behavior in optimal state estima-
tion problems using strict dissipativity. The property characterized by Theorem 6.1
is, however, rather weak in the sense that we actually do not know which points
of the solution ẑ∗ are close to the turnpike z∞, and which are not. We can, how-
ever, strengthen this result under a decaying sensitivity condition, compare [NA20;
SAZ22; SZ21] and see also [Shi+23; GSS20].
To this end, for any N ∈ I≥0, let us consider the auxiliary problem P̄N(D̄, xi, xt) pa-
rameterized by the data (D̄, xi, xt), where D̄ = {D̄(j)}N

j=0 with D̄(j) = (ū(j), ȳ(j)) ∈
U × Rp, j ∈ I[0,N ], and xi, xt ∈ X :

min
x̄,d̄

N−1∑
j=0

L(x̄(j), d̄(j); D̄(j)) (6.17a)

s.t. x̄(0) = xi, (6.17b)
x̄(N) = xt, (6.17c)
x̄(j + 1) = f(x̄(j), ū(j), d̄(j)), j ∈ I[0,N−1], (6.17d)
x̄(j) ∈ X , j ∈ I[0,N ], (6.17e)
d̄(j) ∈ D, ȳ(j) − h(x̄(j), ū(j)) ∈ V , j ∈ I[0,N−1]. (6.17f)

For the sequences x̄ = {x̄(j)}N
j=0 and d̄ = {d̄(j)}N−1

j=0 , let z̄(j) := (x̄(j), d̄(j)), j ∈
I[0,N−1], and z̄(N) := (x̄(N), 0). The constraints in (6.17b) and (6.17c) specify fixed
initial and terminal states of the sequence x̄ for some given parameters xi and xt.
We characterize solutions to the problem (6.17) (assuming that they exist, compare
Remark 6.2) using the solution mapping ζ̄N , i.e., such that z̄∗(j) = ζ̄N(j, D̄, xi, xt),
j ∈ I[0,N ] with z̄∗(j) := (x̄∗(j), d̄∗(j)), j ∈ I[0,N−1], and z̄∗(N) := (x̄∗(N), 0).
We point out the following relation between the infinite-horizon problem P∞ in (6.9)
and the auxiliary problem P̄N in (6.17).

Lemma 6.1. Consider an infinite data sequence D∞ associated with the system (6.1)
and the causal subsequence D = {D(j)}N

j=0 such that D(j) = D∞(j) for j ∈ I[0,N ].
Any minimizer of P∞(D∞) is a minimizer of P̄N(D, x∞(0), x∞(N)) for any N ∈ I≥0.

Proof. The proof relies on the principle of optimality. First, note that the problem
P̄N(D, x∞(0), x∞(N)) is feasible because the candidate solution {z∞(j)}N

j=0 satisfies
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the constraints (6.17b)–(6.17f) with D̄ = D. Let z̄∗(j) := ζ̄N(j,D, x∞(0), x∞(N)).
Now, suppose the claim is false. Then,

N−1∑
j=0

L(z∞(j);D(j)) >
N−1∑
j=0

L(z̄∗(j);D(j)).

To both sides of this inequality, we add the cost terms
−1∑

j=−∞
L(z∞(j);D∞(j)) +

∞∑
j=N

L(z∞(j);D∞(j)),

which yields

V (D∞) >
−1∑

j=−∞
L(z∞(j);D∞(j)) +

N−1∑
j=0

L(z̄∗(j);D(j)) +
∞∑

j=N

L(z∞(j);D∞(j)),

(6.18)
where V (D∞) corresponds to the the value function associated with the infinite-
horizon problem P∞(D∞). Now, consider the infinite sequence ξ = {ξ(j)}∞

j=−∞
defined as

ξ(j) = (χ(j), ω(j)) :=


z∞(j), j ∈ I≤−1

z̄∗(j), j ∈ I[0,N−1]

z∞(j), j ∈ I≥N .

(6.19)

Then, (6.18) can be re-written as

V (D∞) >
∞∑

j=−∞
L(ξ(j);D∞(j)). (6.20)

The sequence ξ satisfies the constraints in (6.9) due to the initial and terminal con-
straints in (6.17b) and (6.17c), respectively, and hence constitutes a valid candidate
solution for the infinite-horizon problem P∞(D∞). However, the strict inequality in
(6.20) contradicts minimality of V (D∞), which proves the claim.

We make the following assumption.

Assumption 6.2 (Decaying sensitivity). There exists β ∈ KL such that for any
xi

1, x
i
2 ∈ X and xt

1, x
t
2 ∈ X , and any data sequence D = {D(j)}N

j=0 for which the
NLP in (6.17) is feasible and admits a solution, it holds that

|ζ̄N(j,D, xi
1, x

t
1) − ζ̄N(j,D, xi

2, x
t
2)| ≤ β(|xi

1 − xi
2|, j) + β(|xt

1 − xt
2|, N − j) (6.21)

for all j ∈ I[0,N ] and all N ∈ I≥0.

Decaying sensitivity is a quite natural property of parametric NLPs that charac-
terizes how much perturbations in the data at one stage influence the solution of
the optimization problem at another stage [NA20; SAZ22]. In our case, the prop-
erty (6.21) refers to two solutions of the optimization problem where the data sets
involved only differ in the initial conditions xi

1, x
i
2 and terminal conditions xt

1, x
t
2,
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but otherwise contain exactly the same data; consequently, the bound given by the
right-hand side in (6.21) involves only those terms. In Section 6.2.4, we show that
Assumption 6.2 is naturally satisfied for linear systems under standard observability
and controllability conditions.
The following result establishes turnpike behavior in optimal state estimation prob-
lems using Assumption 6.2.

Theorem 6.2. Suppose that Assumption 6.2 is satisfied. Consider the infinite-horizon
solution z∞ of the problem P∞ in (6.9) for some data set D∞ associated with the
system (6.1). Then, the solution ẑ∗ of the finite-horizon problem PN in (6.4) using
the truncated data set D = {D(j)}N

j=0 with D(j) = D∞(j), j ∈ I[0,N ] satisfies

|ẑ∗(j) − z∞(j)| ≤ β(|ẑ∗(0) − z∞(0)|, j) + β(|ẑ∗(N) − z∞(N)|, N − j) (6.22)
for all j ∈ I[0,N ], N ∈ I≥0, and all possible D∞.

Proof. Theorem 6.2 is a simple consequence of Lemma 6.1 and Assumption 6.2.
First, note that the sequence ẑ∗ is a minimizer of P̄N(D, x̂∗(0), x̂∗(N)), which follows
by optimality of ẑ∗ and the fact that the solution of (6.17) is not changed by adding
the terminal cost Ltc(x̂∗(N);D(N)) in (6.5) due to the terminal constraint in (6.17c).
Moreover, by application of Lemma 6.1, we also know that z∞ is a minimizer of
P̄N(D, x∞(0), x∞(N)). Hence, we can invoke Assumption 6.2 to compare ẑ∗ and z∞

on I[0,N ], which leads to (6.22) and hence finishes this proof.

6.2.4. Linear systems

In this section, we show how Assumption 6.2 (decaying sensitivity) is naturally
satisfied in the standard linear quadratic setting. More specifically, we consider the
LTI system

x(t+ 1) = Ax(t) +Bxu(t) + Ed(t) (6.23a)
y(t) = Cx(t) +Byu(t) + Fv(t) (6.23b)

and the quadratic stage cost

L(x, d; (u, y)) = 1
2 |d|2Q + 1

2 |y − (Cx+Byu)|2R (6.24)

for some weighting matrices Q,R ≻ 0.
Now, consider the solution z̄∗ of the NLP in (6.17) for some given admissible pa-
rameters (D̄, xi, xt) and N ∈ I≥1. Invoking the first-order necessary conditions for
optimality, there exist adjoints (also called costates or dual variables) λ̄∗(j), j ∈ I[0,N ]
such that the following equations are satisfied for all j ∈ I[0,N−1]:

x̄∗(j + 1) = ∂H
∂λ

(j, x̄∗(j), d̄∗(j), λ̄∗(j + 1)), (6.25a)

λ̄∗(j) = ∂H
∂x

(j, x̄∗(j), d̄∗(j), λ̄∗(j + 1)), (6.25b)

0 = ∂H
∂d

(j, x̄∗(j), d̄∗(j), λ̄∗(j + 1)), (6.25c)
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where H is the associated Hamiltonian

H(j, x, d, λ) := L(x, d; D̄(j)) + λ⊤f(x, ū(j), d).

For more details, we refer to [BH75] and [FG22]. For the linear quadratic setup from
above (i.e., the LTI system (6.1) and the quadratic stage cost (6.24)), the equations
in (6.25) specialize to

x̄∗(j + 1) = Ax̄∗(j) +Bxū(j) + Ed̄∗(j), (6.26a)
λ̄∗(j) = A⊤λ̄∗(j + 1) + C⊤RCx̄∗(j) − C⊤Rȳ(j) + C⊤RByū(j), (6.26b)

0 = Qd̄∗(j) + E⊤λ̄∗(j + 1), (6.26c)

where the boundary conditions are formed by the initial and terminal constraints
in (6.17b) and (6.17c). Solving (6.26c) for the optimal disturbance input yields
d̄∗(j) = −Q−1E⊤λ̄∗(j + 1) (recall that Q is positive definite and hence invertible),
which together with (6.26a) and (6.26b) leads to the Hamiltonian system[

x̄∗(j + 1)
λ̄∗(j)

]
=
[

A −EQ−1E⊤

C⊤RC A⊤

] [
x̄∗(j)

λ̄∗(j + 1)

]
+
[

Bx 0
C⊤RBy −C⊤R

] [
ū(j)
ȳ(j)

]
(6.27)

with j ∈ I[0,N−1]. Note that the forced part in (6.27) involving the input-output
data D̄(j) = (ū(j), ȳ(j)), j ∈ I[0,N−1] stems from the nature of the problem (which
can be seen as an optimal control problem for output tracking with an additional
input reference).
In the following, we consider two optimal solutions z̄∗

i , i = 1, 2 that differ in their
boundary conditions; more precisely, such that z̄∗

i (j) = ζ̄N(j, D̄, xi
i, x

t
i) for some

feasible D̄, xi
i, xt

i, i = 1, 2, yielding the corresponding adjoints λ̄∗
i (j) for j ∈ I[0,N ]

and i = 1, 2. For convenience, we define the differences in the optimal states x̄∗
i (j),

adjoints λ̄∗
i (j), and disturbances d̄∗

i (j), i = 1, 2 as

∆x(j) = x̄∗
1(j) − x̄∗

2(j), j ∈ I[0,N ], (6.28a)
∆λ(j) = λ̄∗

1(j) − λ̄∗
2(j), j ∈ I[0,N ], (6.28b)

∆d(j) = d̄∗
1(j) − d̄∗

2(j), j ∈ I[0,N−1]. (6.28c)

Note that both optimal trajectories evolve according to (6.27); moreover, since they
rely on the same data D̄, the differences ∆x(j) and ∆λ(j) in (6.28a) and (6.28b)
satisfy the equations of the unforced Hamiltonian system[

∆x(j + 1)
∆λ(j)

]
=
[

A −EQ−1E⊤

C⊤RC A⊤

] [
∆x(j)

∆λ(j + 1)

]
.

Assuming that A is non-singular, we can rewrite this into[
∆x(j + 1)
∆λ(j + 1)

]
= H

[
∆x(j)
∆λ(j)

]
(6.29)
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with the Hamiltonian matrix

H =
[
A+ Q̃A−⊤R̃ −Q̃A−⊤

−A−⊤R̃ A−⊤

]
, (6.30)

where Q̃ := EQ−1E⊤ and R̃ := C⊤RC are symmetric. The matrix H in (6.30) oc-
curs very frequently in the context of linear quadratic optimal control and associated
Riccati theory; in particular, it is well-known that the reciprocals of the eigenvalues
of H are also eigenvalues of H, compare, for example, [Vau70] and [Kuč72].
Now, consider the discrete algebraic Riccati equation (DARE)

X − A⊤X(I + Q̃X)−1A− R̃ = 0. (6.31)

We impose the following assumption.

Assumption 6.3 (System properties). The pairs (A,E) and (A,C) are controllable
and observable3, respectively.

Under Assumption 6.3 and invertibility of the system matrix A, it is well-known
that the DARE (6.31) admits a maximal positive definite solution P+ and a minimal
negative definite solution P− (which correspond to the unique stabilizing and anti-
stabilizing solution, respectively), compare, e.g., [KN99; Ion96; Kuč72; WK72], and
see also Sections 3.5–3.7 in [IOW99]. Moreover, these properties ensure that the
Hamiltonian matrix H in (6.30) has neither eigenvalues on the unit circle nor in the
origin, compare [Kuč72, Lem. 1, Lem. 4]. Note that observability and invertibility
of A could be relaxed at the expense of a more technically involved analysis, see
Remark 6.5 below for further details.
The stabilizing and anti-stabilizing solutions to the DARE lead to the corresponding
“closed-loop” matrices

A+ = A− Q̃A−⊤(P+ − R̃), (6.32)
A− = A− Q̃A−⊤(P− − R̃), (6.33)

where the eigenvalues of A+ and A− are strictly inside and outside the unit circle.
The following proposition builds on the results from [NM05; FN05] and illustrates
that all trajectories satisfying the Hamiltonian system (6.29) can be suitably re-
parameterized using the solutions to the DARE (6.31).

Proposition 6.1. Consider the LTI system in (6.23) under Assumption 6.3 and let A
in (6.23a) be non-singular. Furthermore, consider the quadratic stage cost in (6.24)
and let Q,R ≻ 0. Then, any solution to the Hamiltonian system (6.29) formed by
the two sequences {∆x(j)}N

j=0 and {∆λ(j)}N
j=0 can be parameterized as[

∆x(j)
∆λ(j)

]
=
[
I
P+

]
Aj

+p+
[
I
P−

]
A

−(N−j)
− q, j ∈ I[0,N ] (6.34)

for suitable p, q ∈ Rn.
3Here, we refer to the usual definitions of controllability and observability in terms of the associ-

ated rank conditions with respect to the matrix pair involved, see, e.g., Definition 3.3.1 (p. 90)
and Theorem 16 (p. 200) in [Son90].
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Proof. The proof essentially follows the lines of the proof of [FN05, Thm. 5]. It can
be structured into two parts, where we first show that parameterized trajectories sat-
isfying (6.34) are trajectories of the Hamiltonian system (6.29), and conversely, that
all solutions of the Hamiltonian system (6.29) can be expressed in terms of (6.34)
for suitable p, q ∈ Rn.
Part I. In order to show that trajectories of (6.34) also satisfy the dynamics of the
Hamiltonian system (6.29), we simply need to verify if the following equality holds
true:[

I
P+

]
Aj+1

+ p+
[
I
P−

]
A

−(N−j−1)
− q = H

([
I
P+

]
Aj

+p+
[
I
P−

]
A

−(N−j)
− q

)
, j ∈ I[0,N ].

(6.35)

This can be separated into two parts involving p and q independently of each other.
For the terms corresponding to p, by recalling the definition of H from (6.30) and
multiplying with A−j

+ from the right, we obtain the condition[
I
P+

]
A+ =

[
A+ Q̃A−⊤R̃ −Q̃A−⊤

−A−⊤R̃ A−⊤

] [
I
P+

]
. (6.36)

Here, we note that the first block row directly holds true by definition of A+ in (6.32).
The second block row follows by using the definition of A+ and replacing the differ-
ence (P+ − R̃) by application of the DARE (6.31):

0 != P+A+ + A−⊤R̃ − A−⊤P+

= P+A− P+Q̃A
−⊤(P+ − R̃) − A−⊤(P+ − R̃)

= P+A− (I + P+Q̃)A−⊤(P+ − R̃)
= P+A− (I + P+Q̃)A−⊤(A⊤P+(I + Q̃P+)−1A)
= P+A− (I + P+Q̃)P+(I + Q̃P+)−1A

= P+A− (P+ + P+Q̃P+)(I + Q̃P+)−1A

= P+A− P+(I + Q̃P+)(I + Q̃P+)−1A

= P+A− P+A

= 0,

which hence establishes the desired equality in (6.36). Considering the terms involv-
ing q in (6.35), it must hold that[

I
P−

]
A− =

[
A+ Q̃A−⊤R̃ −Q̃A−⊤

−A−⊤R̃ A−⊤

] [
I
P−

]
. (6.37)

This equality can be verified by using the definition of A− from (6.33), the DARE
in (6.31), and the same arguments that were applied to establish (6.36). Conse-
quently, both (6.36) and (6.37) hold under the stated conditions, which implies
that (6.35) is satisfied and hence finishes the first part of this proof.
Part II. We now show that all solutions of the Hamiltonian system (6.29) can be
expressed in terms of (6.34) for suitable values of p and q. To this end, we prove



6. Turnpike analysis and performance guarantees 169

that the parameterized system (6.34) has 2n linearly independent trajectories and

represents the complete set of solutions of (6.29). Define V+ =
[
I
P+

]
and V− =

[
I
P−

]
.

From the first part of this proof, it follows that

HV+ = V+A+, HV− = V−A−.

This essentially implies that im(V+) and im(V−) constitute H-invariant subspaces,
where the eigenvalues of H restricted to im(V+) and im(V−) correspond to the eigen-
values of A+ and A− and hence are all stable and anti-stable, respectively. Hence, it
follows that im(V+) ∩ im(V−) = {0}. Therefore, for a given p, q ∈ Rn, the two tra-
jectories V+A

j
+p and V−A

−(N−j)
− q are linearly independent, and the dimension of the

linear space of trajectories of the parameterized system (6.34) is given by the sum of
the dimensions n1 and n2 of the subspaces of trajectories of (6.34) corresponding to
the cases where p = 0 and q = 0, respectively. Because V+ and V− are full column
rank and the powers of A+ and A− are nonsingular for all j ∈ I[0,N ], we have that
n1 = n and n2 = n. Consequently, the parameterized system (6.34) has 2n linearly
independent solutions, which implies that (6.34) parameterizes the complete set of
solutions of (6.29) and hence concludes this proof.

Remark 6.5 (Conditions of Propositions 6.1). Propositions 6.1 essentially requires
that the system matrix A is invertible, that the pairs (A,E) and (A,C) are control-
lable and observable, and that the weighting matrices Q and R are positive definite.
While controllability (with respect to the disturbance input) and positive definiteness
of Q and R are not overly restrictive in the estimation context, the invertibility of
A and observability may limit the applicability in practice. However, we empha-
size that these conditions are only imposed for the sake of clarity, ensuring that
the derived results and implications are easier to interpret. Specifically, they can
be relaxed by avoiding the derivation of the Hamiltonian system (6.29) and instead
consider the extended symplectic Hamiltonian system in descriptor form as done in
[FN05; FN07]. Similar conclusions may then be derived by adapting [FN05, Th. 5],
simply requiring positive semidefiniteness of Q and R, controllability of the pair
(A,E), and conditions on the extended symplectic matrix pencil associated with the
system, ensuring that it is regular and has no generalized eigenvalues on the unit
circle. However, formulating the corresponding results with sufficient technical pre-
cision would require many additional tools and concepts, which would distract from
the main message.

Proposition 6.2. Consider the LTI system in (6.23) under Assumption 6.3 and let
A in (6.23a) be non-singular. Furthermore, consider the quadratic stage cost in
(6.24) and let Q,R ≻ 0. Then, the optimal estimation problem in (6.17) satisfies
the decaying sensitivity condition in Assumption 6.2. More specifically, there exist
constants C > 0 and λ ∈ (0, 1) such that the differences defined in (6.28) satisfy

|∆x(j)| + |∆de(j)| + |∆λ(j)| ≤ C
(
λj|∆x(0)| + λN−j|∆x(N)|

)
(6.38)

for all j ∈ I[0,N ] and any N ∈ I≥1, where ∆de(j) = ∆d(j) for j ∈ I[0,N−1] and
∆de(N) = 0.
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Proof. Consider some N ∈ I≥1, D̄, xi
i, xt

i, i = 1, 2 such that the optimal estimation
problem (6.17) is feasible for both sets of parameters (D̄, xi

i, x
t
i), i = 1, 2. Consider

the optimal solutions z̄∗
i (j) = ζ̄N(j, D̄, xi

i, x
t
i) along with the corresponding adjoints

λ̄∗
i (j), j ∈ I[0,N ], i = 1, 2. Their differences in the states, adjoints, and disturbance

inputs can be characterized by (6.28), which satisfy the Hamiltonian system (6.29)
for all j ∈ I[0,N−1].
Since the conditions of Proposition 6.1 are satisfied, we can alternatively use the
parameterization provided by (6.34) to express the evolution of the differences in
(6.28). Here, we note that because A+ and A−1

− are constant Schur stable matrices
where the eigenvalues of A+ coincide with the eigenvalues of A−1

− , there exists a
constant CA > 0 such that

max
{∣∣∣∣∣
[
I
P+

]∣∣∣∣∣ ∣∣∣Aj
+

∣∣∣ , ∣∣∣∣∣
[
I
P−

]∣∣∣∣∣ ∣∣∣A−j
−

∣∣∣} ≤ CAλ
j (6.39)

uniformly for all j ∈ I[0,N ], where λ = λmax(A+) ∈ (0, 1) (see, for example, [Per01,
Thm. 2, p. 56], the proof of which can be straightforwardly adapted to the discrete-
time setting considered here). In combination, we thus obtain∣∣∣∣∣

[
∆x(j)
∆λ(j)

]∣∣∣∣∣ ≤ CAλ
j|p| + CAλ

N−j|q| (6.40)

for j ∈ I[0,N ].
We now compute suitable p and q depending on the boundary conditions given by
the initial and terminal constraints in (6.17b) and (6.17c) in terms of the parameters
xi

i, xt
i, i = 1, 2—implying that ∆x(0) = xi

1 −xi
2 and ∆x(N) = xt

1 −xt
2. In particular,

by evaluating (6.34) at j = 0 and j = N , we obtain the following system of linear
equations: [

∆x(0)
∆x(N)

]
=
[
I A−N

−
AN

+ I

] [
p
q

]
.

This can be solved for p and q by simple matrix inversion. To this end, let M :=
(I−AN

+A
−N
− )−1 (where we note that M is well-defined for any N ∈ I≥1), which leads

to

p = (I + A−N
− MAN

+ )∆x(0) − A−N
− M∆x(N),

q = −MAN
+ ∆x(0) +M∆x(N).

Since A+ and A−1
− are Schur stable, there exists a constant c > 0 such that |M | ≤ c

uniformly for all N ∈ I≥1. In combination with the property in (6.39), there exist
constants C1, C2 > 0 such that

|p| ≤ C1|∆x(0)| + C2λ
N |∆x(N)|, (6.41a)

|q| ≤ C2λ
N |∆x(0)| + C1|∆x(N)|. (6.41b)

From (6.40) and (6.41), we hence obtain that∣∣∣∣∣
[
∆x(j)
∆λ(j)

]∣∣∣∣∣ ≤ CA

(
λjC1 + λN−jC2λ

N
)

|∆x(0)| + CA

(
λjC2λ

N + λN−jC1
)

|∆x(N)|

≤ CA(C1 + C2)
(
λj|∆x(0)| + λN−j|∆x(N)|

)
(6.42)
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uniformly for all j ∈ I[0,N ]. This establishes the desired bound on the state and ad-
joint differences. It remains to derive a similar bound on the disturbance difference.
Using (6.28c), the optimality condition in (6.26c), and the dynamics of the adjoint
difference according to (6.29) with (6.30), we have that

|∆d(j)| ≤ |Q−1E⊤∆λ(j + 1)|
≤ |Q−1E⊤A−⊤|(|R̃||∆x(j)| + |∆λ(j)|)
≤ Cd(|∆x(j)| + |∆λ(j)|)

for j ∈ I[0,N−1], where Cd := |Q−1E⊤A−⊤| max{|R̃|, 1}. Define the extended dis-
turbance sequence ∆de := {∆de(j)}N

j=0 satisfying ∆de(j) = ∆d(j), j ∈ I[0,N−1] and
∆de(N) = 0. Hence, we obtain

|∆x(j)| + |∆de(j)| + |∆λ(j)| ≤ (1 + Cd)(|∆x(j)| + |∆λ(j)|)

≤
√

2(1 + Cd)
∣∣∣∣∣
[
∆x(j)
∆λ(j)

]∣∣∣∣∣ (6.43)

for all j ∈ I[0,N ]. Using (6.42) in (6.43) and defining C :=
√

2(1 + Cd)CA(C1 + C2)
establishes the desired bound in (6.38) for any N ∈ I≥1. For the special case of
N = 0, the bound in (6.38) trivially holds for the state and disturbance difference
∆x(0) and ∆de(0), which implies that Assumption 6.2 holds and hence finishes this
proof.

6.2.5. Discussion

From the previous sections, one can see that there are in fact multiple ways to for-
malize the turnpike behavior observed in the motivating example in Section 6.2.1.
Specifically, in Section 6.2.2 we used a dissipativity condition (Assumption 6.1) of
the optimal estimation problem to derive a bound on the number of elements of the
sequence ẑ∗ that lie outside an ϵ-neighborhood of the turnpike, compare [GM16; GP-
S18]. This definition is particularly suitable for use in the context of economic model
predictive control (see, for example, [FGM18]), and also has the decisive advantage
that the corresponding sufficient condition (strict dissipativity, see Assumption 6.1)
is a global concept. Unfortunately, the resulting turnpike property (Theorem 6.1)
is rather weak in the sense that it is not possible to infer which elements of the
solution ẑ∗ are actually close to the turnpike z∞, and which are not. However, this
additional information is crucially required in the context of state estimation, as will
be clear in Section 6.3.
In contrast, in Section 6.2.3 we used a decaying sensitivity property (Assumption 6.2)
of the optimal estimation problem and derived an explicit bound on the difference
between the solution ẑ∗ and the turnpike z∞, see Theorem 6.2. To infer a global
turnpike property, Assumption 6.2 is required to hold globally as well, that is, for
any two optimal solutions of the NLP in (6.17) involving arbitrary (admissible)
xi

i, x
t
i ∈ X , i = 1, 2. This is naturally satisfied for linear systems under control-

lability and observability, see Section 6.2.4. However, in the context of general
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nonlinear systems, such a global condition is indeed (and unnecessarily) restrictive,
and corresponding results are usually stated in a local sense, that is, for two op-
timal solutions that are sufficiently close to each other. In particular, it is shown
in [SAZ22] that (local) exponentially decaying sensitivity is present under standard
regularity and optimality conditions of the problem (such as a uniform second-order
sufficient condition for optimality and uniform boundedness of the Hessian of the
Lagrangian), which are satisfied under certain local observability and controllability
assumptions, see [SZ21] and compare also [GSS20]. However, using a local version of
Assumption 6.2 would require that the finite-horizon solution x̂∗ is already close to
the unknown infinite-horizon solution z∞ in order to apply a local decaying sensitiv-
ity property and deduce turnpike behavior, and consequently allow for local results
only.
In the context of nonlinear optimal control, global turnpike properties featuring an
explicit (exponential or polynomial) time-dependent bound on the difference be-
tween optimal solutions and the turnpike are provided in, e.g., [Dam+14; TZ15;
Tré23; HZ22]. The corresponding results are usually established by combining as-
sumptions of global nature (such as strict dissipativity) with assumptions of local
nature that involve the linearizations of the extremal equations at the turnpike
(an optimal equilibrium), compare [Dam+14; Tré23]. For general nonlinear opti-
mal state estimation problems, establishing a global turnpike property in the sense
of (6.22), for example by combining global strict dissipativity (Assumption 6.1) with
a local version of decaying sensitivity (Assumption 6.2), is an interesting topic for
future work.
In the following, we employ a turnpike characterization that essentially reproduces
the core property from Theorem 6.2 in a global sense, where we retain general KL-
functions to cover arbitrary decay rates.

Definition 6.1 (Turnpike for optimal state estimation). Consider the infinite-horizon
solution z∞ of the problem P∞(D∞) in (6.9) for some data set D∞ associated with
the system (6.1). The optimal estimation problem PN(D) using the truncated data
set D = {D(j)}N

j=0 with D(j) = D∞(j), j ∈ I[0,N ] exhibits the turnpike property with
respect to z∞ if there exists β ∈ KL such that ẑ∗(j) = ζN(j,D) satisfies

|ẑ∗(j) − z∞(j)| ≤ β(|ẑ∗(0) − z∞(0)|, j) + β(|ẑ∗(N) − z∞(N)|, N − j) (6.44)

for all j ∈ I[0,N ], N ∈ I≥0, and all possible data D∞.

In the following section, we use the turnpike property from Definition 6.1 to assess
the performance of MHE and its regret with respect to the benchmark z∞. For
practical applications, a reliable indicator for the presence of turnpike behavior
in non-convex optimal state estimation problems is to simply run simulations and
check whether the turnpike property can be observed, compare also the simulation
examples in Section 6.4.
We want to close this section devoted to turnpike in optimal state estimation with
the following remark.
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Remark 6.6 (Approaching and leaving arcs). Note that the finite-horizon problem
PN(D) considers a segment of the data set that underlies the infinite-horizon problem
P∞(D∞). Specifically, the neglected information involves the fictitious historical data
{D∞(j)}−1

j=−∞ and the future data {D∞(j)}∞
j=N+1, which is why, under the turnpike

property from Definition 6.1, finite-horizon solutions exhibit both a left approaching
arc and a right leaving arc, see Figure 6.1.

6.3. Performance analysis

In online state estimation, one is generally interested in obtaining, at each time
instant t ∈ I≥0, an accurate estimate of the current true (unknown) state x(t). A
natural approach is to simply solve the optimal state estimation problem in (6.4)
based on all available (in particular: causal) historical data D = {D(j)}t

j=0 (by
setting N = t in (6.4)). This corresponds to the case of FIE, which can be formalized
using the solution mapping ζx

N defined below (6.8) as follows:

x̂fie(t) = ζx
t (t,D) , t ∈ I≥0. (6.45)

However, repeatedly solving Pt(D) for the current FIE solution x̂fie(t) is generally
infeasible in practice since the problem size continuously grows with time. Instead,
MHE considers the truncated optimal estimation problem PN(Dt) using only the
most recent data

Dt = {Dt(j)}N
j=0 = {D(j)}t

j=t−N , t ∈ I≥N ,

where the horizon length N ∈ I≥0 is fixed. More precisely, the MHE estimate at the
current time t ∈ I≥0 can be written as

x̂mhe(t) =
ζ

x
N(N,Dt), t ∈ I≥N

ζx
t (t,D), t ∈ I[0,N−1].

(6.46)

Such MHE schemes constitute well-established methods for state estimation, which
are increasingly applied in practice, compare Chapter 3. However, assuming that the
underlying optimal estimation problem exhibits the turnpike property in the sense of
Definition 6.1, we know that both the FIE sequence defined by (6.45) and the MHE
sequence defined by (6.46) consist of point estimates of finite-horizon problems that
lie on the leaving arc, see Figure 6.2; hence, MHE and FIE might produce estimates
that are actually far away from the turnpike.
In the following, we employ a novel performance analysis to improve the estimation
results of MHE as follows:

• Reduce the influence of the leaving arc by introducing an artificial delay in the
estimation (Sections 6.3.1 and 6.3.2).

• Reduce the influence of the approaching arc by using a turnpike-based prior
weighting (Section 6.3.3).
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Figure 6.2. Sketch of the infinite-horizon solution x∞ (blue), the current FIE solution
ζt(t, D) (green), and finite-horizon solutions ζN (j, Dτ ), j ∈ I[τ−N,τ ] for different values of
τ ∈ I[N,t] (red dashed).

Our results in this section are based on the assumption that the MHE problems
exhibit the turnpike behavior from Definition 6.1.

Assumption 6.4 (Turnpike). The finite-horizon optimal state estimation problem PN

in (6.4) exhibits the turnpike property in the sense of Definition 6.1.

In the following, for the sake of simplicity we restrict ourselves to horizons N being
a non-negative even number, the set of which we denote by Ie

≥0.

6.3.1. A delay improves the estimation results

To avoid the influence of naturally appearing leaving arcs in finite-horizon estimation
problems that underlie MHE as in (6.46), it seems meaningful to introduce a delayed
MHE scheme (δMHE). Specifically, for a fixed delay δ ∈ I[0,N/2] with N ∈ Ie

≥0, we
define

x̂δmhe(t− δ) =
ζ

x
N (N − δ,Dt) , t ∈ I≥N

ζx
t (t− δ,D) , t ∈ I[δ,N−1].

(6.47)

Note that for the special case δ = 0, δMHE reduces to standard MHE (6.46).
Hence, the parameter δ is an additional degree of freedom that constitutes a trade-
off between delaying the estimation results and reducing the influence of the leaving
arc.

Remark 6.7 (δFIE). By replacing N with t and using only the second case in (6.47),
we can similarly define a delayed FIE scheme (δFIE). Consequently, all the following
results and implications derived for δMHE directly carry over to δFIE. However, as
MHE is of greater practical importance, we will limit ourselves to it in the remainder
of this chapter.
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Remark 6.8 (Smoothing form of MHE). Considering a fixed delay in the estimation
scheme to improve the estimation results is actually quite common in signal process-
ing and filtering theory and refers to fixed-lag smoothing algorithms [CJ11, Ch. 5].
Early results for linear systems can be found in, e.g., [Moo73]; more recent works
address, e.g., robustness against model errors [YZ23] or extensions to certain classes
of nonlinear systems [RP15]. For linear systems with Gaussian noise, fixed-lag re-
ceding horizon smoothers are proposed in [SS13; Kim13; KK22]. In this context,
the proposed δMHE scheme can also be interpreted as the (fixed-lag) smoothing form
of MHE. Compared to the literature on smoothing algorithms, however, we consider
general nonlinear systems under arbitrary process and measurement noise and pro-
vide performance and regret guarantees with respect to the infinite-horizon optimal
solution using turnpike arguments.

The following result shows that by a suitable choice of the delay δ, the estimated
state sequence (6.47) can be made arbitrarily close to the state sequence of the
omniscient infinite-horizon estimator z∞.

Proposition 6.3. Let Assumption 6.4 hold and X be compact. Then, there exists
σ ∈ L such that the estimated state sequence of δMHE in (6.47) satisfies

|x̂δmhe(j) − x∞(j)| ≤ σ(δ), j ∈ I[δ,t−δ] (6.48)

for all t ∈ I≥δ, δ ∈ [0, N/2], N ∈ Ie
≥0, and all possible data D∞.

Proof. By compactness of X , there exists C > 0 such that |x1 − x2| ≤ C for all
x1, x2 ∈ X . The rest of this proof directly follows from the definition of δMHE
in (6.47) and Assumption 6.4. Specifically, for all j ∈ I[δ,N−δ−1], we have that

|x̂δmhe(j) − x∞(j)|
≤ |ζj+δ(j,D) − z∞(j)|
≤ β(|ζx

j+δ(0, D) − x∞(0)|, j) + β(|ζx
j+δ(j + δ,D) − x∞(j + δ)|, δ)

≤ β(C, j) + β(C, δ)
≤ 2β(C, δ),

where D(j) = D∞(j), j ∈ I[0,j+δ]. For j ∈ I[N−δ,t−δ], on the other hand, it follows
that

|x̂δmhe(j) − x∞(j)|
≤ |ζN(N − δ,Dj+δ) − z∞(j)|
≤ β(|ζx

N(0, Dj+δ) − x∞(j + δ −N), N − δ) + β(|ζx
N(N,Dj+δ) − x∞(j + δ)|, δ)

≤ β(C,N − δ) + β(C, δ)
≤ 2β(C, δ),

where Dj+δ(i) = D∞(i), i ∈ I[j+δ−N,j+δ]. Combining both cases for j ∈ I[δ,t−δ] and
defining σ(s) := 2β(C, s), s ≥ 0 yields (6.48), which finishes this proof.
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Proposition 6.3 provides an estimate on the accuracy of δMHE in the sense of how
close the obtained sequence x̂δmhe is to the benchmark x∞ on the interval I[δ,t−δ].
Since σ ∈ L, this difference can be made arbitrarily small by increasing the delay δ
(as well as N if needed). This is in line with intuition, as increasing δ results in the
state estimates in (6.47) being closer to the turnpike.
In the following, we establish novel performance guarantees for δMHE and analyze
the regret with respect to the infinite-horizon benchmark solution.

6.3.2. Performance estimates for MHE

In this section, we consider the case where the dynamics (6.1a) are subject to additive
disturbances:

f(x, u, d) = fa(x, u) + d (6.49)
with d ∈ D = Rn. Furthermore, we impose a Lipschitz condition on the nonlinear
functions fa and h on X .

Assumption 6.5 (Lipschitz continuity). The functions fa and h are Lipschitz in
x ∈ X uniformly for all u ∈ U , i.e., there exist constants Lf , Lh > 0 such that

|fa(x1, u) − fa(x2, u)| ≤ Lf |x1 − x2|, (6.50)
|h(x1, u) − h(x2, u)| ≤ Lh|x1 − x2| (6.51)

for all x1, x2 ∈ X uniformly for all u ∈ U .

Note that Assumption 6.5 is not restrictive in practice under compactness of X (as
considered in Proposition 6.3).
The dynamics (6.49) ensure one-step controllability with respect to the disturbance
input d; consequently, the estimates x̂δmhe(j), j ∈ I[δ,t−δ] form a feasible state tra-
jectory of system (6.1), driven by the disturbance input d̂δmhe(j) = x̂δmhe(j + 1) −
fa(x̂δmhe(j), u(j)), j ∈ I[δ,t−δ−1]. For the sake of conciseness, we define the combined
sequence ẑδmhe as

ẑδmhe(j) := (x̂δmhe(j), d̂δmhe(j)), j ∈ I[δ,t−δ−1], ẑδmhe(t− δ) := (x̂δmhe(t− δ), 0).
(6.52)

We now specify the performance measure. To this end, we denote with t1, t2 ∈ I≥0
the time instants defining some interval of interest I[t1,t2]. For a given sequence ẑ
with ẑ(j) = (x̂(j), d̂(j)) satisfying the system dynamics x̂(j+1) = f(x̂(j), u(j), d̂(j))
for j ∈ I[0,t2], we consider the performance criterion

J[t1,t2](ẑ) :=
t2−1∑
j=t1

L(ẑ(j); d(j)) (6.53)

with the stage cost L from (6.5). The following result provides a performance
estimate for δMHE, and moreover, can be used to quantify the dynamic regret with
respect to the omniscient infinite-horizon benchmark solution z∞.
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Theorem 6.3. Consider the system dynamics (6.49) and the quadratic stage cost
in (6.6). Let Assumptions 6.4 and 6.5 be satisfied. Then, there exists σ̄ ∈ L such
that for any choice of ϵ > 0, the sequence ẑδmhe in (6.52) obtained using δMHE for
some arbitrary delay δ ∈ I[0,N/2] and horizon length N ∈ Ie

≥0 satisfies the following
performance estimate:

J[t1,t2](ẑδmhe) ≤ (1 + ϵ)J[t1,t2](z∞) + 1 + ϵ

ϵ
((t2 − t1)σ̄(δ)) (6.54)

for all t1, t2 ∈ I[δ,t−δ], all t ∈ I≥δ, and all possible data D∞.

Before proving Theorem 6.3, we want to highlight some key properties of the per-
formance estimate (6.54).

Remark 6.9 (Performance of δMHE).
1. The performance of δMHE (the sequence ẑδmhe) is approximately optimal on

the interval I[t1,t2] with respect to the infinite-horizon solution z∞, with error
terms that depend on the choices of ϵ, δ, and the interval length t2 − t1.

2. The performance estimate in (6.54) directly yields a bound on the dynamic
regret (i.e., the performance loss) of δMHE with respect to the omniscient
infinite-horizon benchmark solution z∞; in particular, it follows that

J[t1,t2](ẑδmhe) − J[t1,t2](z∞) ≤ ϵJ[t1,t2](z∞) + 1 + ϵ

ϵ
((t2 − t1)σ̄(δ)),

compare also Corollary 6.1 and the corresponding discussion below.
3. In case of an exponential turnpike property (i.e., Assumption 6.4 holds with

β(s, t) = Ksλt in Definition 6.1 for some K > 0 and λ ∈ (0, 1)), the L-
functions σ and σ̄ in Proposition 6.3 and Theorem 6.3 also exhibit exponential
decay. In this case, the performance of δMHE converges exponentially to the
performance of the infinite-horizon estimator as δ increases. This behavior is
also evident in the numerical example in Section 6.4.

4. The performance estimate (6.54) grows linearly with the size of the performance
interval (i.e., the difference t∆ = t2 − t1) and tends to infinity if t∆ approaches
infinity. This property is to be expected (due to the fact that the turnpike is
never exactly reached) and conceptually similar to (non-averaged) performance
results in economic model predictive control, see, for example, [FGM18, Sec. 5]
and [Grü16]. To make meaningful performance estimates in case t∆ → ∞, we
analyze the averaged performance in Corollary 6.2 below.

5. Theorem 6.3 is stated for the practically relevant case of quadratic stage costs
as in (6.6) for ease of presentation, but can easily be extended to more general
cost functions that fulfill a weak triangle inequality.

Proof of Theorem 6.3. Using the definitions from (6.5)–(6.7), the performance cri-
terion evaluated for δMHE reads

J[t1,t2](ẑδmhe) =
t2−1∑
j=t1

|d̂δmhe(j)|2Q + |y(j) − h(x̂δmhe(j), u(j))|2R. (6.55)
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From the definition of x̂δmhe(j) in (6.47) and the fact that fa(x∞(j), u(j)) +d∞(j) −
x∞(j + 1) = 0 using (6.49), the square root of the input cost satisfies

|d̂δmhe(j)|Q
= |x̂δmhe(j + 1) − x∞(j + 1) + fa(x∞(j), u(j)) − fa(x̂δmhe(j), u(j)) + d∞(j)|Q
≤ |x̂δmhe(j + 1) − x∞(j + 1)|Q + λmax(Q)Lf |x∞(j) − x̂δmhe(j)| + |d∞(j)|Q (6.56)

for all j ∈ I[t1,t2−1], where in the last step we have used the triangle inequality and
Assumption 6.5. Using Proposition 6.3 and the fact that t1, t2 ∈ I[δ,t−δ], it follows
that

|x̂δmhe(j) − x∞(j)| ≤ |ẑδmhe(j) − z∞(j)| ≤ σ(δ), j ∈ I[t1,t2], (6.57)
where σ ∈ L. Hence, from (6.56) we obtain

|d̂δmhe(j)|Q ≤ |d∞(j)|Q + (1 + Lf)λmax(Q)σ(δ), j ∈ I[t1,t2−1].

Squaring both sides and using the fact that for any ϵ > 0, it holds that (a + b)2 ≤
(1 + ϵ)a2 + 1+ϵ

ϵ
b2 for all a, b ≥ 0 then lets us conclude that

|d̂δmhe(j)|2Q ≤ (1 + ϵ)|d∞(j)|2Q + 1 + ϵ

ϵ
(1 + Lf)2λmax(Q)2σ(δ)2 (6.58)

for each j ∈ I[t1,t2−1]. A similar reasoning for the fitting error (where we add
h(x∞(j), u(j)) − h(x∞(j), u(j)) = 0, j ∈ I[t1,t2−1]) yields

|y(j) − h(x̂δmhe(j), u(j))|R ≤ |y(j) − h(x∞(j), u(j))|R + Lhλmax(R)σ(δ)

for all j ∈ I[t1,t2−1]. By squaring both sides and using the same argument that
allowed us to obtain (6.58), we get

|y(j) − h(x̂δmhe(j), u(j))|2R ≤ (1 + ϵ)|y(j) − h(x∞(j), u(j))|2R

+ 1 + ϵ

ϵ
L2

hλmax(R)2σ(δ)2 (6.59)

for all j ∈ I[t1,t2−1]. The performance criterion (6.55) together with (6.58), (6.59),
and the definition of

σ̄(s) :=
(
(1 + Lf)2λmax(Q)2 + L2

hλmax(R)2
)
σ(s)2, s ≥ 0

(where we note that σ̄ ∈ L) establishes (6.54) and hence finishes this proof.

To further derive a linear bound on the dynamic regret and an estimate of the
asymptotic averaged performance of δMHE, we first show that J[t1,t2](z∞) grows at
maximum linearly in the difference t2 − t1.

Lemma 6.2. Let D and V be compact. There exists A > 0 such that J[t1,t2](z∞) ≤
A(t2 − t1) for any possible data D∞.

Proof. Due to D and V being compact, there exist constants CQ, CR > 0 such that
|d̂|2Q ≤ CQ and |y − h(x̂, u)|2R ≤ CR for all (x̂, d̂, u, y) ∈ X × D × U × Rp such that
y − h(x̂, u) ∈ V . Hence, the claim holds with A = CQ + CR.
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The following Corollary from Theorem 6.3 establishes bounded dynamic regret of
δMHE with respect to the benchmark z∞.

Corollary 6.1. Let the conditions of Theorem 6.3 be satisfied. Assume that D and
V are compact. Then, the regret of δMHE can be bounded by

J[t1,t2](zδmhe) − J[t1,t2](z∞) ≤ (t2 − t1)
(
ϵA+ 1 + ϵ

ϵ
σ̄(δ)

)
(6.60)

for all t1, t2 ∈ I[δ,t−δ], all t ∈ I≥δ, and all possible data D∞, where ϵ > 0 and σ̄ ∈ L
are from Theorem 6.3 and A > 0 is from Lemma 6.2.

We emphasize that the regret bound provided by Corollary 6.1 is linear in the
interval length t2 − t1, where the slope C(ϵ, δ) :=

(
ϵA+ 1+ϵ

ϵ
σ̄(δ)

)
can be rendered

arbitrarily small by suitable choices of ϵ and δ. Again, linear dependency on (t2 −t1)
is to be expected as the turnpike is never exactly reached, compare Remark 6.9.
The following result establishes an estimate on the averaged performance of δMHE
for the asymptotic case when (t2 − t1) → ∞.

Corollary 6.2. Let the conditions of Theorem 6.3 be satisfied. Assume that D and
V are compact. Then, δMHE satisfies the averaged performance estimate:

lim sup
t∆→∞

1
t∆
J[t1,t2](zδmhe) ≤ lim sup

t∆→∞

1
t∆
J[t1,t2](z∞) + ϵA+ 1 + ϵ

ϵ
σ̄(δ)

for all possible data D∞, where ϵ > 0 and σ̄ ∈ L are from Theorem 6.3, A > 0 is
from Lemma 6.2, and t∆ = t2 − t1.

Corollary 6.2 implies that the averaged performance of δMHE is finite (due to the
fact that J[t1,t2](z∞) can be bounded as J[t1,t2](z∞)/t∆ ≤ A by Lemma 6.2) and
approximately optimal with respect to the infinite-horizon solution z∞, with error
terms that can be made arbitrarily small by suitable choices of ϵ and δ.
As we show in the following, in the limit δ → ∞ we can even fully recover the
benchmark performance. To this end, we need the following auxiliary lemma.

Lemma 6.3. For any function θ ∈ L, there exists a continuous function δ : (0,∞) →
(0,∞), strictly decreasing, satisfying lims→0 δ(s) = ∞ and lims→∞ δ(s) = 0, and
such that θ(δ(s)) ≤ s2 for all s > 0.

Proof. We prove our claim by constructing a suitable function δ. To this end, note
that for any θ ∈ L, there exists a continuous function g : (0,∞) → (0,∞) satisfying
the following properties:

• g(s) is strictly decreasing on (0,∞),
• lim

s→0
g(s) = ∞ and lim

s→∞
g(s) = 0,

• g(s) ≥ θ(s) for all s > 0.
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A possible choice is, for example, g(s) = θ(s) + 1
s
. Since g is strictly decreasing,

it is one-to-one; hence, there exists an inverse g−1 : (0,∞) → (0,∞). Now, define
δ(s) = g−1(s2), s > 0. It is easy to see that δ is strictly decreasing and satisfies
lim
s→0

δ(s) = ∞, and lim
s→∞

δ(s) = 0 (as g−1 does). Moreover, this particular choice of δ
implies

θ(δ(s)) ≤ g(δ(s)) ≤ g(g−1(s2)) = s2

for all s > 0, which yields the desired result and hence finishes this proof.

This enables the following corollary of Theorem 6.3.

Corollary 6.3. Let the conditions of Theorem 6.3 be satisfied. Assume that D and V
are compact. Furthermore, let the delay δ be parameterized in ϵ > 0 with δ having
the properties from Lemma 6.3 for θ = σ̄, where σ̄ ∈ L is from Theorem 6.3. Then,
letting ϵ → 0, the averaged regret of δMHE satisfies

lim sup
t∆ → ∞

ϵ → 0

1
t∆

(
J[t1,t2](zδmhe) − J[t1,t2](z∞)

)
= 0,

for all possible data D∞, where t∆ = t2 − t1.

Proof. Consider the regret bound in (6.60), which applies due to the fact that the
assumptions of Corollary 6.3 are satisfied. As σ̄ ∈ L, we can choose δ according to
Lemma 6.3 such that σ̄(δ(ϵ)) ≤ ϵ2. Consequently, from (6.60) we obtain

lim sup
t∆→∞

1
t∆

(
J[t1,t2](zδmhe) − J[t1,t2](z∞)

)
≤ ϵA+ 1 + ϵ

ϵ
ϵ2 = ϵ2 + (1 + A)ϵ. (6.61)

Letting ϵ → 0 establishes the desired statement and hence finishes this proof.

The construction of the function δ(ϵ) employed in Corollary 6.3 establishes a direct
relation between the upper bound on the averaged regret of δMHE and the delay δ;
in particular, for the averaged regret approaching zero, we require that δ → ∞,
while for a larger bound smaller values of δ suffice, see (6.61) and recall that δ(ϵ) is
strictly decreasing in its argument.
Overall, Proposition 6.3, Theorem 6.3, and Corollaries 6.1–6.3 imply that δMHE
is able to track the solution and the performance of the omniscient infinite-horizon
benchmark estimator. Generally, larger values of δ reduce the influence of the leaving
arc and thus improve the performance estimates. Here, the best performance is
achieved for δ = N/2, which, on the other hand, introduces a potentially large
delay (depending on the choice of N). However, in the practically relevant case of
exponential turnpike behavior, already small values of δ are expected to significantly
reduce the influence of the leaving arc and hence improve the estimation results
compared to standard MHE (without delay), which is also evident in the simulation
examples in Section 6.4.2.
We conclude this section by noting that while it is possible in MPC to design suitable
terminal ingredients that yield finite non-averaged performance for t → ∞ (see, for
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example, [GP15]), this does not seem to be possible here, as it would imply that we
have certain information about future data in order to exactly reach and stay on
the solution of the acausal infinite-horizon optimal estimation problem.

6.3.3. MHE with prior weighting

It is known that MHE schemes with a cost function as in (6.5) might require rel-
atively large estimation horizons to achieve satisfactory estimation results, com-
pare [RMD20, Sec. 4.3.2]. In order to reduce the required horizon length and enable
faster computations, MHE formulations that leverage an additional prior weighting
are therefore usually preferred in practice, compare also Chapters 3–5. The prior
weighting can generally be seen as additional regularization of the cost function,
ensuring that the initial state x̂(0) of an estimated sequence x̂ = {x̂(j)}N

j=0 solving
the problem (6.4) stays in a meaningful region. In view of our turnpike results, a
well-chosen prior weighting hence reduces the influence of the approaching arc and
ensures that solutions of truncated finite-horizon problems can reach the turnpike
in fewer steps.
The prior weighting is usually parameterized by a given prior estimate x̄ ∈ X and
a (possibly time-varying) function Γt(x, x̄) that is positive definite and uniformly
bounded in the difference |x − x̄|. As in previous chapters, we use the definition
Nt := min{t, N}, which is convenient as it avoids additional case distinctions. At a
given time t ∈ I≥0, the (time-varying) MHE cost function with prior weighting can
then be formulated as

Jp
Nt

(x̂t, d̂t;Dt, t) := Γt−Nt(x̂t(0), x̄(t−Nt)) + JNt(x̂t, d̂t;Dt), (6.62)

with the current decision variables x̂t = {x̂t(j)}Nt
j=0 and d̂t = {d̂t(j)}Nt−1

j=0 , the current
data sequence Dt = {Dt(j)}Nt

j=0 = {D(j)}t
j=t−Nt

, and where JNt is from (6.5) with N
replaced by Nt. At any time t ∈ I≥0, the current MHE problem to solve is given by
the optimal estimation problem (6.4) with N replaced by Nt and the cost function
Jp

Nt
from (6.62), which we denote by P p

Nt
(Dt, x̄t−Nt , t). The corresponding solution

(which exists under mild conditions, see Remark 6.2 and compare also Section 3.1) is
described by the sequence z̃∗ = {z̃∗(j)}N

j=0, where z̃∗(j) = (x̃∗(j), d̃∗(j)), j ∈ I[0,Nt−1]
and z̃∗(Nt) = (x̃∗(t), 0). The prior estimate x̄(t−Nt) is typically chosen in terms of
a past solution of the problem P p

Nt
, which introduces a coupling between the MHE

problems. For easier reference, it is therefore convenient to introduce an additional
index, where, e.g., z̃∗

t (j), j ∈ I[0,Nt] refers to the element z̃∗(j) of the solution of
P p

Nt
(·, t) computed at time t ∈ I≥0, compare, e.g., Section 3.1.

We first consider the standard MHE case and set the current state estimate x̂mhe,p(t)
to the last state of the optimal estimated sequence z̃∗

t (Nt), i.e., x̂mhe,p(t) := x̃∗
t (Nt)

for all t ∈ I≥0. In Remark 6.11 below, we again consider an additional delay in the
MHE scheme to reduce the influence of the naturally appearing leaving arc.
A popular choice for the prior weighting is the quadratic cost

Γt(x, x̄) = |x− x̄|2W (t), (6.63)
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where W (t) is a constant or time-varying positive definite weighting matrix that
might be updated using, for example, covariance update laws from nonlinear Kalman
filtering, compare [RRM03; QH09; BZD20; Küh+11]. Given some initial guess
χ̂ ∈ X of the true initial condition χ, there are two common choices for updating
the prior estimate x̄(t−Nt): first, the filtering prior

x̄(t−Nt) =
x̃

∗
t−N(N), t ∈ I≥N

χ̂, t ∈ I[0,N−1],
(6.64)

which corresponds to the state estimate computed N steps in the past, i.e., the last
element of the solution to the problem P p

N(·, t−N); second, the smoothing prior

x̄(t−Nt) =
x̃

∗
t−1(1), t ∈ I≥1

χ̂, t = 0,
(6.65)

which refers to the second element of the solution to P p
Nt

(·, t − 1) computed at the
previous time step t − 1, compare [RMD20, Sec. 4.3.2]. MHE with a smoothing
prior can generally recover faster from poor initial estimates, whereas MHE with a
filtering prior essentially comprises measurements from two time horizons and may
therefore be advantageous in the long term. Notice that we mainly analyze MHE
with the filtering prior in this thesis, as this allows us to derive a contraction of the
estimation error over the horizon (and thus establish robust stability of MHE, see
for example Chapter 3), which is also in line with the most recent literature in this
context, compare, e.g., [Mül17; AR21; KM23; Sch+23; Hu24; Ale25]. In contrast,
the smoothing prior is used, for example, in [ABB08; AG17], and often serves in
practice-oriented works as a linearization point for computing an improved prior
estimate based on EKF updates, compare, e.g., [Küh+11; BZD20] and see also the
review article [Els+21] for a more detailed discussion on this topic.
However, from our turnpike analysis in Section 6.2, we know that both of these two
choices may in fact be unsuitable if we are interested in approximating the infinite-
horizon optimal performance; the smoothing prior corresponds to an element of a
finite-horizon solution on the approaching arc, and the filtering prior to an element
of the solution on the leaving arc. To counteract this, we propose the following
turnpike prior :

x̄(t−Nt) =
x̃

∗
t−N/2(N/2), t ∈ I≥N/2

χ̂, t ∈ I[0,N/2−1],
(6.66)

which corresponds to the middle element of the solution of PN(·, t−N/2) computed
at time t−N/2. This particular choice avoids the influence of the approaching and
leaving arcs (for t ∈ I≥N). In fact, we can even show that the prior estimate x̄(t −
Nt) converges to a neighborhood of the turnpike x∞ under the following modified
(exponential) turnpike property of the MHE problem P p

Nt
.

Assumption 6.6 (Exponential turnpike for MHE with prior weighting). There exist
constants K > 0 and λ ∈ (0, 1) such that for all N ∈ I≥0, the solutions of the
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finite-horizon problem P p
N(Dt, x̄, t) and the infinite-horizon problem P∞(D∞) satisfy

|z̃∗
t (j) − z∞(t−N + j)| ≤ K

(
|x̃∗

t (0) − x∞(t−N)|λj + |x̃∗
t (N) − x∞(t)|λN−j

)
(6.67)

for all j ∈ I[0,N ], t ∈ I≥N , x̄ ∈ X , and all possible data D∞, where Dt = {Dt(j)}N
j=0 =

{D∞(j)}t
j=t−N .

Assumption 6.6 essentially states that the infinite-horizon solution z∞ serves as
turnpike for MHE problems with prior weighting, compare the discussion in Sec-
tion 6.2.5. Note that such behavior could be observed in all our numerical examples
in Section 6.4.2.

Remark 6.10 (Exponential turnpike). In contrast to Definition 6.1, we impose an
exponential turnpike property in Assumption 6.6, which is crucially required to derive
uniform (exponential) convergence of the turnpike prior x̄(t−Nt) to the turnpike x∞

in the following proposition. Note that this is conceptually similar to recent stability
results for nonlinear MHE, which also require exponential detectability (rather than
asymptotic detectability) to establish a linear contraction of the estimation error
over the estimation horizon (and thus derive exponential stability), see Chapter 3
for more details and compare also [AR19b; AR21; Sch+23; Hu24].

Proposition 6.4. Let Assumption 6.6 hold and the sets X , D, and V be compact.
Suppose there exist constants c1, c2 > 0 and a ≥ 1 such that

c1|x− x̄|a ≤ Γt(x, x̄) ≤ c2|x− x̄|a (6.68)

for all x, x̄ ∈ X uniformly for all t ∈ I≥0. Furthermore, assume that there exist
α1, α2, α3 ∈ K∞ such that

L(x̂, d̂; (u, y)) ≤ α1(|d̂|) + α2(|y − h(x̂, u)|), (6.69)
Ltc(x̂; (u, y)) ≤ α3(|y − h(x̂, u)|) (6.70)

for all x̂ ∈ X , d̂ ∈ D, (u, y) ∈ U × Rp satisfying y − h(x̂, u) ∈ V. Then, there
exists σ ∈ L such that for any ρ ∈ (0, 1), there exists N̄ ∈ Ie

≥0 such that the turnpike
prior (6.66) satisfies

|x̄(t−N/2) − x∞(t−N/2)| ≤ ρ|x̄(t−N) − x∞(t−N)| + σ(N) (6.71)

for all N ∈ Ie
≥N̄

and t ∈ I≥N .

Proof. Consider any t ∈ I≥N , the data sequence D∞ associated with the sys-
tem (6.1), and an arbitrary prior x̄(t−N) ∈ X . Let z̃∗

t = {z̃∗
t (j)}N

j=0 denote the so-
lution of the problem P p

N(Dt, x̄(t−N), t) computed at time t, where Dt(j) = D∞(j),
j ∈ I[t−N,t]. Furthermore, let x̃∗

t = {x̃t(j)}N
j=0 and d̃∗

t = {d̃∗
t (j)}N−1

j=0 denote the opti-
mal state and disturbance sequences contained in z̃∗

t , and consider the solution z∞

of the infinite-horizon problem P∞(D∞). From Assumption 6.6, we obtain

|z̃∗
t (j) − z∞(t−N + j)| ≤ K|x̃∗

t (0) − x∞(t−N)|λj +KCλN−j (6.72)
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for all j ∈ I[0,N ], where C > 0 satisfies |x1 − x2| ≤ C for all x1, x2 ∈ X (compactness
of X ensures existence of such C). By the triangle inequality, it follows that

|x̃∗
t (0) − x∞(t−N)| ≤ |x̃∗

t (0) − x̄(t−N)| + |x̄(t−N) − x∞(t−N)|. (6.73)

Using (6.68), the cost function (6.62), and optimality of z̃∗, it holds that

c1|x̃∗
t (0) − x̄(t−N)|a

≤ Jp
N(x̃∗

t , d̃
∗
t ;Dt, t)

≤ Jp
N

(
{x∞(j)}t

j=t−N , {d∞(j)}t−1
j=t−N ;Dt, t

)
≤ c2|x∞(t−N) − x̄(t−N)|a + JN

(
{x∞(j)}t

j=t−N , {d∞(j)}t−1
j=t−N ;Dt, t

)
. (6.74)

The bounds in (6.69) and (6.70), compactness of D and V , and similar arguments
as in the proof of Lemma 6.2 imply the existence of uniform constants A,B > 0
such that JN

(
{x∞(j)}t

j=t−N , {d∞(j)}t−1
j=t−N ;Dt, t

)
≤ AN +B. In combination with

(6.73) and (6.74), this leads to

|x̃∗
t (0) − x∞(t−N)|

≤ |x∞(t−N) − x̄(t−N)| +
(
c2

c1
|x∞(t−N) − x̄(t−N)|a + AN +B

c1

)1/a

≤
(

1 +
(
c2

c1

)1/a
)

|x∞(t−N) − x̄(t−N)| +
(
AN +B

c1

)1/a

,

where in the last inequality we have used that the function r 7→ r1/a is subadditive
for r ≥ 0 and a ≥ 1. Evaluating (6.72) at j = N/2, we can infer that

|z̃∗
t (N/2) − z∞(t−N/2)| ≤ K

(
1 +

(
c2

c1

)1/a
)

|x∞
t−N − x̄t−N |λN/2

+K
(
AN +B

c1

)1/a

λN/2 +KCλN/2. (6.75)

For any ρ ∈ (0, 1), there exists N̄ ∈ Ie
≥0 such that K(1 + (c2/c1)1/a)λN/2 ≤ ρ for all

N ∈ I≥N̄ . Define σ1(s) := K((As+B)/c1)1/aλs/2, s ≥ 0. Obviously, σ1 is continuous;
moreover, σ1(s) converges to zero for s → ∞, since the exponential term dominates
for large enough s. Hence, there exists a function σ̄1 ∈ L satisfying σ1(s) ≤ σ̄1(s)
for all s ≥ 0. Thus, from (6.75), we can infer that the updated turnpike prior
x̄(t−N/2) = x̃∗

t (N/2) satisfies

|x̄(t−N/2) − x∞(t−N/2)| ≤ |z̃∗
t (N/2) − z∞(t−N/2)|

≤ ρ|x̄(t−N) − x∞(t−N)| + σ̄1(N) +KCλN/2

for all t ∈ I≥N and N ∈ Ie
≥N̄

. Defining σ(s) = σ̄1(s) +KCλs/2 for s ≥ 0 and noting
that σ ∈ L establishes the statement of this proposition and hence concludes this
proof.
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The conditions in (6.68)–(6.70) on the prior weighting, stage cost, and terminal cost
are standard (compare, e.g., [RMD20, Ass. 4.22]) and obviously satisfied for the
practically relevant case of quadratic penalties as in (6.6), (6.7), and (6.63). Provided
that the horizon length N is chosen sufficiently large, Proposition 6.4 implies (by
a recursive application of the property in (6.71)) that the turnpike prior x̄(t − Nt)
defined in (6.66) forms a sequence that exponentially converges to a neighborhood
of the turnpike (i.e., the infinite-horizon solution x∞), which is also evident in the
simulation example in Section 6.4.2. Here, we want to emphasize that the size of this
neighborhood depends on the horizon length N and can in fact be made arbitrarily
small by choosing larger values of N (due to the fact that σ ∈ L).
Overall, a properly selected prior weighting Γt according to Proposition 6.4 ensures
that the initial state x̃∗

t (0) of the solution of the MHE problem P p
Nt

(·, t) is close to
the turnpike, which hence effectively reduces the approaching arc and allows using
short horizons. However, the natural occurrence of the leaving arc can still cause
the resulting estimate x̂mhe,p(t) = x̃∗

t (N) to be again relatively far away from the
turnpike, which could again be reduced by introducing an artificial delay in the
MHE scheme as suggested in Section 6.3.1.

Remark 6.11 (Performance of δMHE with prior weighting). For some fixed delay
δ ∈ I[0,N/2], we can define δMHE (with prior weighting) as

x̂δmhe,p(t− δ) = x̃∗
t (Nt − δ), t ∈ I≥δ. (6.76)

Under Assumption 6.6, it is straightforward to show that |x̂δmhe,p(j)−x∞(j)| ≤ σ(δ)
for all j ∈ I[δ,t−δ], t ∈ I≥δ, with σ ∈ L from Proposition 6.3 (which can be easily
modified to this case). As a result, the performance estimates from Theorem 6.3
along with the Corollaries 6.1–6.3 directly carry over to δMHE with prior weight-
ing. Consequently, δMHE with prior weighting and a suitably selected delay δ can
recover the accuracy and performance of the infinite-horizon estimator, with shorter
horizons compared to δMHE without prior weighting. Here, we want to emphasize
that this conclusion holds under Assumption 6.6, i.e., for any choice of the prior
estimate x̄(t − Nt) from (6.64)–(6.66) (in contrast to Proposition 6.4, which is an
exclusive feature of the proposed turnpike prior (6.66)). Our simulation results in
Section 6.4.2 show that already (very) small values of δ significantly improve the
estimation accuracy.

6.3.4. Offline state estimation

We now want to briefly discuss the case of offline state estimation, which can be
interpreted as a special case of our previous setup. Here, one is interested in match-
ing an a priori given data sequence D = {D(j)}T

j=0 for some T ∈ I≥0 to the system
equations (6.1) to obtain an estimate of the true unknown state sequence {x(j)}T

j=0.
To this end, a natural approach is to simply solve the optimal state estimation prob-
lem in (6.4) with N = T . However, if the data set (in particular, the value of T )
or the underlying model is very large or the computations are limited in terms of
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time or resources, solving the full problem PT (D) for the optimal solution is usually
difficult (or even impossible) in practice.
Instead, we can construct an approximation of the optimal state sequence corre-
sponding to the solution of the full problem PT (D) using a sequence of smaller
problems PN of length N ∈ Ie

≥0 and our results from Section 6.3. Specifically, we
define the approximate estimator

x̂ae(j) =


ζx

N(j,DN), j ∈ I[0,N/2]

ζx
N(N/2, Dj+N/2), j ∈ I[N/2+1,T −N/2−1]

ζx
N(N − T + j,DT ), j ∈ I[T −N/2,T ],

(6.77)

where ζx
N is defined below (6.8) and Di = {Di(j)}N

j=0 = {D(j)}i
j=i−N for i ∈ I[N,T ]

are subsets (or partitions) of the full data set D.
Note that for j ∈ I[N/2+1,T −N/2−1], the approximate estimator in (6.77) corresponds
to the δMHE scheme in (6.47) with δ = N/2. Hence, the accuracy and performance
estimates established in Section 6.3 (i.e, Proposition 6.3, Theorem 6.3, and Corol-
lary 6.1) directly apply with respect to the benchmark z∞ (where the underlying
data set D∞ is a suitable extension of D to the interval I such that the system dy-
namics (6.1) and (6.2) are satisfied for all t ∈ I). Therefore, under Assumption 6.4,
the estimates x̂ae(j) are close to the turnpike z∞(j) for all j ∈ I[N/2,T −N/2]. Notice,
however, that the turnpike property imposed in Assumption 6.4 also applies to the
full problem PT (D), which implies that the corresponding solution is also close to
z∞ on the interval I[N/2,T −N/2], compare Figure 6.2. Hence, Assumption 6.4 en-
sures that the estimated sequence in (6.77) is approximately optimal on I[N/2,T −N/2]
with respect to the (unknown) desired solution of the full problem PT (D), compare
Remark 6.9.
Moreover, since the individual finite-horizon estimation problems in (6.77) are com-
pletely decoupled from each other, computing the approximate estimator (6.77) can
be parallelized and hence has the potential to significantly save time and resources.
In other words, the construction in (6.77) can be considered as a distributed com-
putation of the optimal solution PT (D) with negligible error (provided that N is
large enough), which can also be seen in the simulation example in Section 6.4.1.
This is practically relevant for, e.g., large data assimilation problems that appear
in geophysics and environmental sciences [ABN16; Car+18], but also more general
in the context of robust optimization for data-driven decision making, compare,
e.g., [Moh+18; MK17].

Remark 6.12 (Reduced computations). We can easily generalize our results by con-
structing the approximate estimator x̂ae by concatenating subsequences of the so-
lutions of the truncated problems. Specifically, from each solution ζN(j,Di), in-
stead of using only the single element at j = N/2 as in (6.77), we take all the
elements corresponding to j ∈ I[N/2−∆,N/2+∆] for some ∆ ∈ I[0,N/2]. This con-
struction allows for qualitatively similar performance results as in Theorem 6.3
and Corollary 6.1, albeit with slightly worse bounds depending on the length of the
subsequences (i.e., ∆). However, this approach can greatly reduce the number of
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problems to be solved. In particular, assuming that there exists k ∈ I≥0 such that
T,N,∆ satisfy T = N + (k+ 1)(2∆ + 1), our modified construction requires solving
K∆ := k+ 2 = T −N

2∆+1 + 1 truncated problems. For the special case of ∆ = 0 (i.e., the
approximate estimator (6.77)), it follows that K∆ = T−N+1, which is quite large if
T is large. However, increasing the value of ∆ significantly reduces the value of K∆
(as K∆ is proportional to 1/∆). In fact, our simulation example in Section 6.4.1
shows that it is sufficient to select ∆ relatively close to N/2 such that only the first
(resp. last) few elements on the approaching (resp. leaving) arc of the truncated
solutions are discarded, which significantly reduces the number of problems to solve.

6.3.5. Good performance implies accurate state estimates

So far, we have investigated how close the solutions of finite-horizon state estimation
problems are to the infinite-horizon solution. In practice, however, one is usually in-
terested in the accuracy of the estimation results with respect to the real (unknown)
system trajectory. In this section, we draw a direct link between the performance
of a state estimator (measured by the criterion in (6.53)) and its accuracy (in terms
of the estimation error). To this end, a detectability condition is required to ensure
that the collected measurement data contains sufficient information about the real
unknown state trajectory, where we again consider the notion of i-IOSS.

Assumption 6.7 (Exponential i-IOSS). The system (6.1) is exponentially i-IOSS,
i.e., there exists a continuous function U : X × X → R≥0 together with matrices
P , P ,Q,R ≻ 0 and a constant η ∈ (0, 1) such that

|x1 − x2|2P ≤ U(x1, x2) ≤ |x1 − x2|2P , (6.78a)

U(f(x1, u, d2), f(x2, u, d2))
≤ ηU(x1, x2) + |d1 − d2|2Q + |h(x1, u) − h(x2, u)|2R (6.78b)

for all (x1, u, d1), (x2, u, d2) ∈ X × U × D.

Assumption (6.7) is a Lyapunov function characterization of exponential i-IOSS,
which became a standard detectability condition in the context of MHE in recent
years, see, e.g., [RMD20; AR21; KM23; Sch+23; Hu24]. For further details on
i-IOSS and its use as a notion of nonlinear detectability, we refer to Chapter 2. We
want to emphasize that Assumption 6.7 is not restrictive in the state estimation
context; in fact, by adapting the results from [ART21; KM23], it is indeed necessary
and sufficient for the existence of robustly (exponentially) stable state estimators.
Moreover, Assumption 6.7 can be verified using LMIs, see Section 7.1.
Given a sequence x̂ = {x̂(j)}t

j=0, t ∈ I≥0 produced by some state estimator, the
following result establishes a bound with respect to the true state estimates x(j) for
j ∈ I[0,t] in terms of its performance.

Proposition 6.5. Suppose Assumption 6.7 holds. Consider the performance mea-
sure (6.5) for some t1, t2 ∈ I≥0 and the quadratic stage cost (6.6) for some Q,R ≻ 0.
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Then, there exist C1, C2, C3 > 0 such that

|x̂(τ) − x(τ)|2

≤ C1η
τ−t1 |x̂(t1) − x(t1)|2 + C2 max

j∈I[t1,τ−1]

{
|d(j)|2, |v(j)|2

}
+ C3J[t1,t2](ẑ) (6.79)

for all τ ∈ I[t1,t2], all initial conditions χ, χ̂ ∈ X , and all input and disturbance
sequences u ∈ U∞, d, d̂ ∈ D∞, and v ∈ V∞, where η ∈ (0, 1) is from Assumption 6.7
and

x(τ + 1) = f(x(τ), u(τ), d(τ)), x̂(τ + 1) = f(x̂(τ), u(τ), d̂(τ)),
x(0) = χ, x̂(0) = χ̂,

y(τ) = h(x(τ), u(τ)) + v(τ), ẑ(τ) = (x̂(τ), d̂(τ))

for all τ ∈ I≥0.

Proof. Without loss of generality, we can assume that the matrices Q and R used
in the stage cost (6.6) are the same matrices as those in (6.78b). (In fact, for any
positive definite weighting matrices Q and R, the i-IOSS Lyapunov function U from
Assumption 6.7 can be suitably scaled such that (6.78b) holds with that choice of
Q and R.) As the sequences x and x̂ form trajectories of the i-IOSS system (6.1),
we can apply Assumption 6.7 to evaluate their difference. Specifically, using the
dissipation inequality (6.78b), the fact that |a − b|2H ≤ 2|a|2H + 2|b|2H for any real
vectors a, b and matrix H ≻ 0 by Cauchy-Schwarz and Young’s inequality, and the
definition of the performance criterion in (6.53), we can infer that

U(x̂(τ), x(τ))

≤ ητ−t1U(x̂(t1), x(t1)) +
τ−t1∑
j=1

ηj−1
(
|d̂(τ − j) − d(τ − j)|2Q

+ |h(x̂(τ − j), u(τ − j)) − h(x(τ − j), u(τ − j))|2R
)

≤ ητ−t1U(x̂(t1), x(t1)) + 2
τ−t1∑
j=1

ηj−1
(
|d(τ − j)|2Q + |v(τ − j)|2R

)

+ 2
τ−t1∑
j=1

ηj−1
(
|d̂(τ − j)|2Q + |y(τ − j) − h(x̂(τ − j), u(τ − j))|2R

)

≤ ητ−t1U(x̂(t1), x(t1)) + 2
τ−t1∑
j=1

ηj−1
(
|d(τ − j)|2Q + |v(τ − j)|2R

)
+ 2J[t1,t2](ẑ).

The fact that a + b ≤ max{2a, 2b} for all a, b ≥ 0 together with the convergence
property of the geometric series leads to

τ−t1∑
j=1

ηj−1
(
|d(τ − j)|2Q + |v(τ − j)|2R

)
≤ 2C

1 − η
max

j∈I[t1,τ−1]

{
|d(j)|2, |v(j)|2

}
,

where C := max{λmax(Q), λmax(R)}. Using (6.78a), we obtain (6.79) with C1 =
λmax(P )/λmin(P ), C2 = 4C/(λmin(P )(1 − η)), and C3 = 2/λmin(P ), which finishes
this proof.
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Proposition 6.5 draws a direct link between the performance of an estimator (mea-
sured by the criterion in (6.53)) and the corresponding state estimation error. In
particular, for large τ , the error is upper bounded by the performance J[t1,t2] and the
maximum of the disturbances d(j), v(j), j ∈ I[t1,τ−1] that affected the past system
behavior and associated measurement data. Hence, if the disturbances are small,
we directly have that good performance (small values of J[t1,t2]) implies accurate es-
timation results (small errors |x̂(τ) − x(τ)|). Consequently, it is indeed advisable to
design estimators that achieve good performance in the sense of the criterion J[t1,t2].
We want to emphasize that Proposition 6.5 and its implications apply for any state
estimator/observer design. However, as the performance criterion appearing in the
estimation error bound in (6.79) constitutes a part of the cost function used in the
infinite-horizon problem P∞, the corresponding solution z∞ provides a compara-
tively small bound for the estimation accuracy for all τ ∈ I[t1,t2] for any t1, t2 ∈ I≥0.
Under the turnpike condition from Assumption 6.4, we know that δMHE along with
a suitably selected delay δ achieves nearly the same performance as the benchmark
z∞ on any interval I[t1,t2] ⊆ I[δ,t−δ] for all t ∈ I≥δ, and is hence expected to be simi-
larly accurate (note that this conclusion also applies to δMHE with prior weighting
under Assumption 6.6). This highly useful feature of δMHE can also be seen in all
our simulation examples in Section 6.4.

6.4. Numerical examples

We now illustrate our theoretical results presented in Section 6.3. The following sim-
ulations were performed on a standard laptop in MATLAB using CasADi [And+18]
and the NLP solver IPOPT [WB05].
In Section 6.4.1, we first consider the offline estimation case by means of a nonlinear
batch reactor model and a linear system with more than 100 states. Our simula-
tions show that the proposed estimator (6.77) along with the modifications from
Remark 6.12 approximates the optimal (full) solution with negligible error, which
is particularly important in practice when the desired solution of the full problem
cannot be computed due to the size of the problem and common iterative solu-
tions (such as those provided by the Kalman filter and corresponding smoothing
algorithms) are not sufficiently accurate.
Then, in Section 6.4.2, we consider the online estimation case and particularly focus
on MHE with prior weighting, which we investigate using two realistic examples
from the literature: a continuous stirred-tank reactor and a highly nonlinear 12-state
quadrotor model. In both examples, we can observe the turnpike behavior being
present in MHE problems with prior weighting. Our main observation is that already
a small delay in the MHE scheme (one to three steps) reduces the overall estimation
error with respect to the true unknown system state by 20 –25 %.
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6.4.1. Offline estimation

Batch reactor example

We consider the following dynamical system

x+
1 = x1 + t∆(−2k1x

2
1 + 2k2x2) + u1 + d1,

x+
2 = x2 + t∆(k1x

2
1 − k2x2) + u2 + d2,

y = x1 + x2 + v,

(6.80)

with parameters k1 = 0.16, k2 = 0.0064, and t∆ = 0.1. This corresponds to the
chemical reaction example from Section 3.4.1 under Euler discretization and with
additional controls u ∈ R2, process disturbances d ∈ R2, and measurement noise v ∈
R. We consider a given data set D = {D(j)}T

t=0 = {(u(t), y(t))}T
j=t with T = 400,

where the process started at x(0) = χ = [3, 0]⊤, was subject to uniformly distributed
random disturbances and noise satisfying d(t) ∈ {d ∈ R2 : |di| ≤ 0.05, i = 1, 2} and
v(t) ∈ {v ∈ R : |v| ≤ 0.5}, t ∈ I[0,T ], and where the input u(t) was used to
periodically empty and refill the reactor such that x(t + 1) = [3, 0]⊤ + d(t) for all
t = 50i with i ∈ I[1,7] and u(t) = 0 for all t ̸= 50i. To reconstruct the unknown state
trajectory {x(t)}T

t=0, we consider the cost function (6.5)–(6.7) and select Q = I2 and
R = S = 1. In the following, we compare the performance and accuracy of the
optimal solution x̂∗ of the full problem PT (D), the proposed approximate estimator
(AE) x̂ae from (6.77), and standard MHE x̂mhe from (6.46) for different choices of
the horizon length N .
From Figure 6.3, for small horizons (N = 40) we observe that the AE achieves
significantly worse performance compared to the solution of the full problem (and
MHE). This can be attributed to the problem length N being too small, leading
to the fact that the estimates contained in x̂ae correspond to solutions of truncated
problems that are far away from the turnpike, compare also the motivating exam-
ple in Section 6.2.1, particularly Figure 6.1 for small values of N . For increasing
values of N , the estimates are getting closer to the turnpike, and the performance
improves significantly. Specifically, we see exponential convergence to the optimal
performance. This could be expected since the system is exponentially detectable
[Sch+23, Sec. V.A] and controllable with respect to the input d, which suggests that
the turnpike property specializes to an exponential one and hence renders the third
statement of Remark 6.9 valid. Overall, a problem length of N = 130 is sufficient to
achieve nearly optimal performance. The MHE sequence x̂mhe, on the other hand,
generally yields worse performance than the AE (for N ≥ 70). This is completely
in line with our theory, because x̂mhe is a concatenation of solutions of truncated
problems that are on the right leaving arc and hence may be far from the turnpike,
see the discussion below (6.46).
To assess the accuracy of the estimated state sequence with respect to the real
unknown system trajectory x, we compare the SSE of the full solution x̂∗, the AE
x̂ae, and MHE x̂mhe for different sizes N of the truncated problems, accumulated over
the interval I[0,T ]. The corresponding results in Table 6.1 show qualitatively the same
behavior as in the previous performance analysis. In particular, the full solution
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Figure 6.3. Performance J[0,T ] of the AE x̂ae (cyan) and MHE x̂mhe (red) for different
lengths N of the problem PN compared to the performance of the full solution x̂∗ (green).

Table 6.1. SSE for the proposed AE and MHE.

Problem length N AE MHE
40 36.598 (+73.5 %) 27.197 (+28.9 %)
70 24.265 (+15.0 %) 24.311 (+15.2 %)
100 21.708 (+2.9 %) 23.986 (+13.7 %)
130 21.320 (+1.0 %) 23.341 (+10.6 %)
160 21.176 (+0.4 %) 23.325 (+10.5 %)

Values in parentheses indicate the relative increase in the SSE compared to the full solution
x∗ (which achieves SSE = 21.1).

yields the most accurate estimates with the lowest SSE. The proposed AE yields
much higher SSE for small horizons (SSE increase of 73.5 % for N = 40 compared to
the full solution), but improves very fast as N increases, and exponentially converges
to the SSE of the full solution. On the other hand, the SSE of MHE improves much
slower, and is particularly much worse than that of the full solution and the proposed
AE (for N ≥ 70).

Large estimation problems

We illustrate the potential of the proposed AE for large estimation problems where
the computation of the full solution is either time-consuming or simply impossible.
To this end, we consider the LTI system

x(t+ 1) = Ax(t) +Bu(t) + d(t),
y(t) = Cx(t) + v(t),
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Table 6.2. Simulation results for the full solution (full), the proposed approximate esti-
mator (AE), the fixed-interval smoother (FIS), and the Kalman filter (KF).

n p Estimator J[0,T ] SSE τ [s]
30 10 full 12.91 40.81 9.914
30 10 AE 12.93 40.83 0.828
30 10 FIS 15.62 53.04 0.536
30 10 KF 4513.66 69.02 0.113
60 20 full 16.30 51.91 37.648
60 20 AE 16.31 51.91 2.849
60 20 FIS 19.02 66.80 1.608
60 20 KF 4021.66 94.68 0.354
120 40 AE 21.03 84.52 11.456
120 40 FIS 29.21 148.49 4.756
120 40 KF 18403.92 202.58 0.960

where the matrices A,B,C correspond to a randomly selected stable system (com-
puted using the drss command of MATLAB) with m = 30 inputs, n ∈ {30, 60, 120}
states and p ∈ {10, 20, 40} outputs. We consider a batch of measured input-output
data D = {D(t)}T

t=0 with T = 4803, where the system was subject to x(0) = χ = 0,
a known sinusoidal input sequence u, and unknown process disturbance d and mea-
surement noise v; here, each element of d(t) was drawn from a uniform distribution
over [−0.01, 0.01] superimposed with a deterministic sinusoidal function of time
with a magnitude of 0.01 that may represent unmodeled nonlinear dynamics, and
each element of v(t) was drawn from a uniform distribution over [−0.1, 0.1]. For
reconstructing the unknown state sequence x, we consider the quadratic cost func-
tion (6.5)–(6.7) and select Q = In, R = S = Ip. In the following, we compare the
full solution of the problem PT (D) with the AE (6.77), where we rely on the modi-
fications from Remark 6.12 and select k = 32, N = 150, ∆ = 70 (this modification
reduces the number of truncated problems to be solved from K∆ = 4654 for ∆ = 0
to merely K∆ = 34, i.e., by more than 99 %). The full and truncated optimal esti-
mation problems can be cast as unconstrained quadratic programs (QPs), which we
solve using the quadprog implementation of MATLAB. The truncated QPs for the
AE are additionally solved in parallel using the Parallel Computing Toolbox. For
comparison reasons, we also consider the Kalman filter (KF) using the covariance
matrices Q−1 and R−1, where the initial estimate x̂kf(0) is drawn from an isotropic
normal distribution with zero mean and identity covariance matrix In, and the ini-
tial covariance is chosen as P̂ kf(0) = In. Moreover, we consider the fixed-interval
smoother (FIS) considering the entire batch of measurements, which provides the
best possible estimates in the context of KF-related smoothing algorithms, see [CJ11,
Ch. 5] for further details and a description of the corresponding algorithm.
Table 6.2 shows the estimation results in terms of the performance index J[0,T ],
accuracy (SSE), and total computation time τtot for different system dimensions.
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For n ∈ {30, 60}, we observe that the performance J[0,T ] and the SSE of the full
solution and the AE are nearly identical. However, the AE can be computed more
than 10 times faster than the full solution (saving more than 90 % of the computation
time) due to a (much) smaller problem size and the fact that the truncated problems
are solved in parallel. For n = 120, it was already impossible to numerically solve the
full problem PT (D) due to the problem size (in contrast to the AE). For all system
realizations, the KF is much faster, as expected (because the QPs are replaced by
simple matrix computations), however, performs much worse than the AE (both
in terms of J[0,T ] and SSE), which is mainly due to the fact that only past data is
used to compute the corresponding estimates. In contrast, the FIS combines the
KF forward recursion with a backward recursion so that each estimate is computed
based on the entire batch of data, which requires more computations but provides
improved estimates compared to the KF; however, the performance and accuracy
are still worse compared to the AE due to the fact that the considered disturbance
and noise distributions violate the conditions for the FIS to be optimal.
This example shows that the modifications from Remark 6.12 are very effective
for computing the AE in practice. Specifically, to recover the performance and
accuracy of the full solution, it suffices to choose ∆ close to N/2 such that only the
first and last few elements of the truncated solutions (which lie on the approaching
and leaving arcs) are discarded. Overall, it turns out that the AE approximates
the full solution with negligible error, which is particularly important in practice
when the full problem PT (D) cannot be solved due to the size or complexity of the
problem and iterative solutions such as the KF and related smoothing algorithms
are not sufficiently accurate.

6.4.2. Online estimation

Continuous stirred-tank reactor

We consider the continuous stirred-tank reactor (CSTR) from [RMD20, Example
1.11], where an irreversible, first order reaction A → B occurs in the liquid phase
and the reactor temperature is regulated with external cooling, see also [PR03] for
more details. The continuous-time nonlinear state-space model is given by

dc

dt
= F0(c0 − c)

πr2h
− k0 exp

(−E
RT

)
c,

dT

dt
= F0(T0 − T )

πr2h
+ −∆H

ρCp

k0 exp
(−E
RT

)
c+ 2U

rρCp

(Tc − T ),

dh

dt
= F0 − F

πr2 ,

where the states are c (the molar concentration of species A), T (the reactor tem-
perature), and h (the level of the tank), and the control inputs are Tc (the coolant
liquid temperature) and F (the outlet flowrate). The model parameters are taken
from [RMD20, Example 1.11]. The open-loop stable steady-state solution is xss =
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[0.878, 323.5, 0.659]⊤ associated with the input uss = [300, 0.1]⊤. By using Runge-
Kutta discretization (RK4) with sampling time t∆ = 0.25, we obtain the discrete-
time model

x(t+ 1) = f(x(t), u(t), d(t)) = fa(x(t), u(t)) + d(t),
y(t) = h(x(t), u(t)) + v(t) =

[
0 1 0

]
x(t) + v(t),

where we define x(t) = [c(t), T (t), h(t)]⊤ and u(t) = [Tc(t), F (t)]⊤, assume that only
the temperature of the reactor T can be measured, and consider additional process
disturbance d(t) ∈ R3 and measurement noise v(t) ∈ R. The real system is initialized
with x(0) = χ = [0.8, 295, 0.7]⊤. In the following, we consider the simulation time
Ts = 200 and apply an open-loop control sequence u with u2(t) = uss

2 for t ∈ I[0,Ts]
and u1(t) as a trapezoidal input sequence with plateaus at uss

1 and uss
1 − 25. During

the simulations, we sample the disturbances d(t) and v(t) from uniform distributions
over {d ∈ R3 : |d1| ≤ 5 · 10−3, |d2| ≤ 1, |d3| ≤ 5 · 10−3} and {v ∈ R : |v| ≤ 3}.
Figure 6.4 depicts exemplary state trajectories of the reactor for the given setup
under random disturbances and noise.
To estimate the true unknown state x(t) from the measured input-output data on-
line, we design different MHE schemes that rely on the cost function (6.62) with
the horizon length N = 10 and quadratic costs (6.6) and (6.7), where we select the
weighting matrices Q = diag(103, 1, 105) and R = S = 1. Moreover, we consider the
initial guess χ̂ = [0.97, 268, 0.59]⊤ and use a quadratic prior weighting (6.63) with
time-varying matrix W (t), t ∈ I≥0, initialized with W (0) = 10−2I3 and updated
using the well-known covariance formulas of the EKF. In the optimal estimation
problems, we also impose the state constraints X = [0.5, 1.5] × [200, 400] × [0.5, 1.5],
but we consider the disturbance sets to be unknown and use D = R3 and V ∈ R. In
the following, we compare MHE with filtering prior (6.64), smoothing prior (6.65),
and turnpike prior (6.66) and additionally consider the infinite-horizon estimator
(IHE), which we approximate by solving the clairvoyant FIE problem using all sim-
ulation data D = {D(t)}Ts

t=0.
From Figure 6.5, we can observe that all MHE problems (for all priors) exhibit the
turnpike behavior with respect to the infinite-horizon solution, with clear approach-
ing and leaving arcs, which is a strong indicator that Assumption 6.6 holds true. We
additionally compare the standard MHE schemes (without delay) with δMHE (6.76)
using the turnpike prior, where we consider δ = 1 and δ = N/2. From Figure 6.6, we
see that the standard MHE schemes yield very similar estimation results in terms of
the difference to the IHE (for all priors), that δMHE with δ = 1 provides estimates
that are much closer to the IHE, and that δMHE with δ = N/2 (which corresponds
to the turnpike prior (6.66)) converges into a (small) neighborhood of the IHE, which
nicely illustrates Proposition 6.4.
We consider 100 different simulations with random disturbances and randomly se-
lected initial estimates χ̂ that are sampled from a uniform distribution over the
interval centered at χ with a relative deviation of 25 % for each state. Figure 6.7
indicates that the standard MHE schemes are again very similar in terms of their
SSE (for all priors), significantly outperformed by δMHE for δ = 1 (which yields a
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Figure 6.4. CSTR: Exemplary state trajectories under random disturbances and noise for
the initial condition χ and the given control profile for the coolant temperature Tc. The
gray dots represent noisy measurements of the reactor temperature T .

reduction in the SSE by 20 %). Moreover, we observe that the SSE of δMHE with
δ = N/2 is very close to that of the IHE.
Overall, this example nicely illustrates the developed theory. In particular, it shows
that MHE problems with prior weighting exhibit the turnpike behavior with respect
to the IHE (Assumption 6.6), with a potentially strong leaving arc, compare Fig-
ure 6.5. This motivates to incorporate an artificial delay in the estimation scheme
in order to reduce the influence of the leaving arc. Surprisingly, already a one-step
delay is sufficient to significantly reduce the influence of the leaving arc such that
δMHE tracks the performance and accuracy of the IHE with small error, compare
Figure 6.6 and Figure 6.7.

Quadrotor

We consider the quadrotor example from Section 3.4.2 and briefly recall the overall
model. By I we denote the stationary inertial system with its vertical component
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Figure 6.5. CSTR: Finite-horizon solutions x̃∗
t (j) compared to x∞(t−N +j), j ∈ I[0,N ] for

t ∈ I[130,180] using the filtering prior (blue), smoothing prior (black), and turnpike prior
(red); highlighted are particular solutions obtained at t = 149 and t = 169.

Figure 6.6. CSTR: Distance between state estimates using different MHE schemes and
the IHE. Dots indicate values at time t, lines indicate the moving average over a sliding
window of size N + 1.
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Figure 6.7. CSTR: Boxplot of the SSE for MHE using the filtering prior, the smoothing
prior, and the turnpike prior, δMHE using the turnpike prior for δ = 1 and δ = N/2 = 5,
and the IHE over 100 different simulations with random disturbance/noise and randomly
selected initial priors.

pointing into the Earth, where the position and velocity of the quadrotor are rep-
resented by z = [z1, z2, z3]⊤ and s = [s1, s2, s3]⊤, respectively. By B we refer to the
body-fixed frame attached to the quadrotor, with the third component pointing in
the opposite direction of thrust generation. The attitude of B with respect to I is
described by a rotation matrix R (using zyx-convention), which involves the roll,
pitch, and yaw angle of the quadrotor that we denote by ξ = [ϕ, θ, ψ]⊤. The angu-
lar velocity of the quadrotor in B with respect to I is given by Ω = [Ω1,Ω2,Ω3]⊤.
Assuming a wind-free environment, the overall dynamics can be described as

ż = s,

ξ̇ = Γ(ξ)Ω,
mṡ = mge3 − TR(ξ)e3 −R(ξ)BΩ,
JΩ̇ = −Ω×JΩ + τ −DΩ,

where e3 = [0, 0, 1]⊤ and (·)× refers to the skew symmetric matrix associated with
the cross product such that u×v = u × v for any u, v ∈ R3. The thrust T ∈ R and
the torque τ ∈ R3 are generated by the velocities ωi of the four rotors via

[
T
τ

]
=


cT cT cT cT

0 −lcT 0 lcT

lcT 0 −lcT 0
−cQ cQ −cQ cQ



ω2

1
ω2

2
ω2

3
ω2

4


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and the matrix Γ is defined as

Γ(ξ) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ sec θ

 ,
see [Kai+17; NS19] for further details regarding the model and its derivation. The
parameters are chosen as m = 1.9, J = diag(5.9, 5.9, 10.7) · 10−3, g = 9.8, l = 0.25,
cT = 10−5, cQ = 10−6, B = 1.14 · e×

3 , and D = 0.0297 · e3e
⊤
3 .

The overall model has the states x = [z⊤, ξ⊤, s⊤,Ω⊤]⊤ ∈ R12 and the inputs u =
[ω1, ω2, ω3, ω4]⊤ ∈ R4. Using Euler-discretization and the sampling time t∆ = 0.05,
we obtain the discrete-time model

x(t+ 1) = f(x(t), u(t), d(t)) = fa(x(t), u(t)) + d(t),
y(t) = h(x(t), u(t)) + v(t) =

[
I6 06×6

]
x(t) + v(t),

where we consider additional process disturbances d(t) ∈ R12 and assume that only
measurements of the position z(t) and orientation ξ(t) are available, subject to the
measurement noise v(t) ∈ R6. In the simulations, the disturbance d(t) and noise
v(t) are uniformly distributed random variables sampled from the sets {d ∈ R12 :
|di| ≤ 2 · 10−2, i = 1, 2, 3, |di| ≤ 2 · 10−5, i = 4, 5, 6, |di| ≤ 2 · 10−3, i = 7, 8, 9, |di| ≤
2 · 10−6, i = 10, 11, 12} and {v ∈ R6 : |vi| ≤ 2 · 10−1, i = 1, 2, 3, |vi| ≤ 5 · 10−2, i =
4, 5, 6}. We consider the simulation time Ts = 1000 and a given open-loop control
input sequence {u(t)}Ts

t=0, which moves the quadrotor spirally upwards, see Figure 6.8
for an exemplary trajectory under a specific disturbance realization.
To estimate the unknown state x(t), we consider the cost function (6.62) with the
horizon length N = 30 and quadratic costs (6.6) and (6.7), where we select Q =
diag(102I3, 104I3, 103I3, 105I3) and R = S = diag(101I3, 102I3). Moreover, we use
the quadratic prior weighting (6.63), where the weighting matrix W (t) is initialized
with W (0) = 10I12 and updated using the EKF covariance formulas for all t ∈
I≥0. We consider the case where no additional information about the domains of
the states and disturbances is available and use X = R12, D = R12, V = R6

in (6.4c)–(6.4e). In the following, we examine 100 different simulations with random
disturbances, where we additionally sample the initial estimate χ̂ from a uniform
distribution over the set X0 = {x : |zi| ≤ 1, |ξi| ≤ π/16, i = 1, 2, 3, v = 0, Ω = 0}.
We compare standard MHE with filtering prior (6.64), smoothing prior (6.65), and
turnpike prior (6.66), δMHE (6.76) with turnpike-based prior weighting and δ = 1,
δ = 3, and δ = N/2, and the IHE (which we approximate by solving the clairvoyant
FIE problem using all simulation data D = {D(t)}Ts

t=0).
From Figure 6.9, we observe that the MHE schemes with filtering and turnpike prior
perform quite similarly. The fact that MHE with smoothing prior is slightly worse
can be attributed to the fact that the movement of the quadrotor is rather slow
compared to the sampling time, while the horizon length N = 30 is also rather
small. In such setting, MHE with filtering or turnpike prior proves beneficial, as
this essentially considers measurements from a larger estimation window, compare
the discussion below (6.65). For δMHE, we can observe a reduction of the SSE of
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Figure 6.8. Quadrotor: Exemplary 3D trajectory for one specific disturbance realization;
comparison of the true trajectory (red), measurements (gray dots), MHE with filtering
prior (blue), and δMHE for δ = N/2 = 15 (cyan).

approximately 10 % for δ = 1, of 25 % for δ = 3, and of by 50 % for δ = N/2, which
is also close the SSE of the IHE.
To conclude, this example illustrates that the developed theory is also applicable to
more complex and realistic systems from the literature. In particular, it again shows
that using the proposed δMHE scheme with a small delay δ can already significantly
improve the estimation performance in practice.

6.5. Summary

In this chapter, we investigated the turnpike phenomenon in optimal state esti-
mation problems and developed novel accuracy and performance guarantees for
optimization-based state estimation techniques, in particular MHE.
First, we showed that the solution of the (acausal) infinite-horizon optimal estima-
tion problem involving all past and future data serves as a turnpike for finite-horizon
problems that form the core of MHE and FIE. We considered different mathematical
characterizations of this phenomenon and provided sufficient conditions that involve
strict dissipativity and decaying sensitivity. Moreover, for the linear quadratic set-
ting, we showed that decaying sensitivity is naturally present under controllability
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Figure 6.9. Quadrotor: Boxplot of the SSE for MHE using the filtering prior, the smooth-
ing prior, and the turnpike prior, δMHE using the turnpike prior for δ = 1, δ = 3, and
δ = N/2 = 15, and the IHE over 100 different simulations with random disturbance/noise
and randomly selected initial priors.

and observability using standard arguments from optimal control theory.
From our turnpike analysis, we found that MHE problems generally exhibit both
a leaving and an approaching arc that can in fact have a potentially strong nega-
tive impact on the overall estimation accuracy. To counteract the leaving arc, we
suggested using an artificial delay in the MHE scheme, and we showed that the
resulting performance (both averaged and non-averaged) is approximately optimal
and yields bounded regret with respect to the infinite-horizon solution, with error
terms that can be made arbitrarily small by an appropriate choice of the delay.
Regardless of using a delay in the estimation, we proposed a novel turnpike prior
for MHE formulations with prior weighting, effectively counteracting the approach-
ing arc and proven to be a valid alternative to the classical options (such as the
filtering or smoothing prior) with superior theoretical properties. An interesting
topic for future work is to analyze the turnpike prior with respect to the gradient
condition proposed in [BZD20] to better understand and, if possible, further reduce
the influence of the approaching arc.
In our simulations, we found that MHE with the proposed turnpike prior performs
comparably well to MHE with filtering or smoothing priors, while the delay resulted
in a significant improvement of the estimation results. In particular, considering a
continuously stirred tank reactor example and a highly nonlinear quadrotor model
from the literature, we observed the turnpike phenomenon and found that a delay
of one to three steps improved the overall estimation error by 20-25 % compared to
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standard MHE (without delay). For offline estimation, the proposed delayed MHE
scheme has proven to be a useful alternative to established iterative filtering and
smoothing methods, significantly outperforming them especially in the presence of
non-normally distributed noise.
Our performance results are particularly relevant for applications where a small
delay in the online estimation can be tolerated, which is especially the case for
system monitoring, fault detection or parameter estimation. An interesting topic
for future work is the combination of the delayed MHE scheme with state feedback
control, and in particular the investigation of whether the delay in the closed loop is
worthwhile for significantly better estimation results, see also Chapter 8 for further
details.





7. Verification methods

In this chapter, we focus on the numerical verification of detectability (in terms of
i-IOSS) and PE properties for general nonlinear systems. Here, we rely on various
tools to reformulate the corresponding mathematical conditions in the form of LMIs
that can be efficiently solved using SDP. This is an important contribution in itself,
since such properties play a central role in any estimator or observer design in the
respective stability and robustness analysis, but practical tools to actually verify
them are lacking. In the context of the MHE schemes developed and analyzed in
this thesis, however, this becomes even more important, as the detectability and
excitation properties need to be known beforehand (or verified online) in order to
design and implement the corresponding MHE cost functions in the first place. In
Section 7.1, we focus on the computation of i-IOSS and i-iIOSS Lyapunov functions,
while in Section 7.2 we show how certain PE conditions can be verified by evaluating
a suitably constructed observability metrics.
Disclosure: The following chapter is based upon and in parts literally taken from our
previous publications [Sch+23, Sec. IV] and [SM24b; SM23b; SM23a]. A detailed
description of the contributions of each author is given in Appendix A.

7.1. Nonlinear detectability

In the following section, we provide a constructive and systematic approach to com-
pute i-IOSS and i-iIOSS Lyapunov functions for discrete- and continuous-time sys-
tems, respectively. We again want to emphasize that the lack of such a method in the
literature was generally considered a major problem in [AR21], as i-IOSS became a
standard detectability assumption in the recent nonlinear MHE literature, see, e.g.,
[Mül17; AR19b; RMD20; Hu24; KM23; AR21; Ale25] and compare also Section 3.3.
Here, we address this problem and provide practical tools to actually verify this cru-
cial property in practice. To this end, we employ the differential dynamics, which
results in simple LMI conditions involving the Jacobians of the system that can be
efficiently verified using standard tools such as SOS optimization, LPV embeddings,
or gridding techniques.
In general, the differential analysis of nonlinear systems plays an important role, as
simple and intuitive tools from linear control theory become applicable; for example,
by shifting the analysis of convergence between arbitrary system trajectories to the
study of the linearizations along each trajectory, see, e.g., [LS98]. Global properties
can then be inferred by using tools from differential geometry—typically based on a
suitable Riemannian (or Finsler) metric under which the differential displacements
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decrease with the flow of the system. This universal concept offers wide applicability
in the analysis [MS14; FS13; FS14; TRK19] and control [MS18; MS17; KTW21] of
nonlinear systems. In addition, as pointed out in [LS98], it is also naturally suitable
for characterizing the convergence of observers (see, for example, [YWM22; SP12;
SP16]), and consequently, also for i-IOSS and i-iIOSS. In Section 7.1.1, we address
the discrete-time case and i-IOSS, whereas the continuous-time case and i-iIOSS is
dealt with in Section 7.1.2.

7.1.1. i-IOSS Lyapunov functions for discrete-time systems

We consider the system description from (3.1), that is, the nonlinear discrete-time
state-space model

x(t+ 1) = f(x(t), u(t), w(t)), x(0) = χ, (7.1a)
y(t) = h(x(t), u(t), w(t)) (7.1b)

with discrete time t ∈ I≥0, state x(t) ∈ Rn, initial condition χ ∈ Rn, control
input u(t) ∈ Rm, (generalized) disturbance input w(t) ∈ Rq, output y(t) ∈ Rp, and
functions f : Rn×Rm×Rq → Rn and h : Rn×Rm×Rq → Rp. Let Z := X ×U×W for
some X ⊆ Rn, U ⊆ Rm, and W ⊆ Rq be such that f(x, u, w) ∈ X and h(x, u, w) ∈ Y
for all (x, u, w) ∈ Z. In the context of state estimation, this forward-invariance
property allows to incorporate a priori knowledge of the physical domain of the
system, compare Section 3.1. Here, it is merely required for technical reasons in the
proof of Theorem 7.1 below.
We are interested in verifying the following exponential detectability property of the
system in (7.1).

Definition 7.1 (Quadratically bounded i-IOSS Lyapunov function). A continuous
function U : X × X → R≥0 is a quadratically bounded i-IOSS Lyapunov function on
Z if there exist matrices P , P ,Q,R ≻ 0 and a constant η ∈ (0, 1) such that

|x1 − x2|2P ≤ U(x1, x2) ≤ |x1 − x2|2P , (7.2a)

U(f(x1, u, w2), f(x2, u, w2))
≤ ηU(x1, x2) + |w1 − w2|2Q + |h(x1, u, w1) − h(x2, u, w2)|2R (7.2b)

for all (x1, u, w1), (x2, u, w2) ∈ Z.

Note that by a straightforward adaption of the converse Lyapunov theorem from
[ART21], one can easily show that the existence of a quadratically bounded i-IOSS
Lyapunov function in the sense of Definition 7.1 is equivalent to the system (7.1)
being exponentially i-IOSS (and hence exponentially detectable).
We make the following assumption on the regularity of the system (7.1).

Assumption 7.1 (Differentiability). The functions f and h are continuously differ-
entiable on Z.
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Under Assumption 7.1, we can evaluate the linearizations of f and h at a given point
(x, u, w) ∈ Z as

A(x, u, w) = ∂f

∂x
(x, u, w), B(x, u, w) = ∂f

∂w
(x, u, w),

C(x, u, w) = ∂h

∂x
(x, u, w), D(x, u, w) = ∂h

∂w
(x, u, w),

(7.3)

where we omit the dependency of A,B,D,C on (x, u, w) whenever it is clear from
the context.
Now consider an arbitrary change of coordinates x̄ = ϕ(x) with ϕ : Rn → Rn, which
results in the equivalent system dynamics

f̄(x̄, u, w) := ϕ(f(ϕ−1(x̄), u, w)), (7.4a)
h̄(x̄, u, w) := h(ϕ−1(x̄), u, w). (7.4b)

Assumption 7.2 (Coordinate transformation). There exists a diffeomorphism ϕ :
Rn → Rn such that the function h̄ in (7.4b) is affine in (x̄, w), and ∂h̄/∂x̄i = 0 for
all i = 1, . . . n− p.

Provided that Assumption 7.2 holds, the transformed dynamics (7.4) are such that
the transformed output h̄ in (7.4b) depends affinely on a subset of the system
state x̄, which is similar to the class of systems considered in [YWM22]. Note
that this is a fairly general setup covering several observability normal forms and
therefore many physical models that admit a corresponding transformation, com-
pare [YWM22, Rem. 1] and see also [NS90, Sec. 5.1] for further details. Moreover,
as we show in the following remark, the design of ϕ is particularly simple when a
linear combination of the state is measured, which is the case in many practical
applications, compare the example systems in Section 3.4.

Remark 7.1 (Coordinate transformation). In case the output function in (7.1b) is
linear, i.e., satisfies h(x, ·, ·) = Cx for some appropriate matrix C ∈ Rp×n (neglecting
the inputs u and w for clarity), Assumption 7.2 can be trivially fulfilled using a
linear change of coordinates x̄ = ϕ(x) = Tx with T being a suitable non-singular
transformation matrix. Indeed, for any C ∈ Rp×n, one can find a non-singular
T ∈ Rn×n such that h(x, ·, ·) = Cx = CT−1x̄ = [0p×(n−p), C̄]x̄ =: h̄(x̄, ·, ·) holds for
some matrix C̄ ∈ Rp×p. This immediately implies that h̄ is linear (and thus affine) in
x̄ and ∂h̄/∂x̄i = 0 for all i = 1, . . . , n−p. In fact, the condition CT−1 = [0p×(n−p), C̄]
represents an underdetermined system of linear equations that has infinitely many
solutions, which can therefore also be used as an additional tuning knob (e.g., for
normalization).

We partition the state x̄ into two parts

x̄ =
[
x̄x

x̄y

]

with x̄x ∈ Rn−p and x̄y ∈ Rp. Then, the following Theorem yields a quadratically
bounded i-IOSS Lyapunov function according to Definition 7.1.
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Theorem 7.1. Let Assumptions 7.1 and 7.2 hold and P : Rn → Rn×n be such that

P (x) = ∂ϕ

∂x
(x)⊤P̄ (ϕ(x))∂ϕ

∂x
(x) (7.5)

with
P̄ (x̄) =

[
P̄x(x̄x) 0

0 P̄y

]
(7.6)

for some P̄x : Rn−p → R(n−p)×(n−p) and P̄y ∈ Rp×p. Let X be weakly geodesically
convex1, and W be convex. If there exist η ∈ (0, 1) and symmetric matrices P , P ≻ 0
and Q,R ⪰ 0 such that[

A⊤P+A− ηP − C⊤RC A⊤P+B − C⊤RD
B⊤P+A−D⊤RC B⊤P+B −Q−D⊤RD

]
⪯ 0 (7.7)

and
P ⪯ P (x) ⪯ P (7.8)

hold for all (x, u, w) ∈ Z with P+ = P (f(x, u, w)), then there exists a quadratically
bounded i-IOSS Lyapunov function U that satisfies Definition 7.1.

The proof of Theorem 7.1 employs several properties and arguments from Rieman-
nian geometry. For the sake of notation, we use x+ = f(x, u, w) to denote the
successor state of x under the dynamics f given the inputs u and w.

Proof of Theorem 7.1. The proof consists of three parts. First, we establish the
dissipation inequality (7.2b); second, we derive the bounds (7.2a), where we initially
assume that the conditions (7.7)–(7.8) hold globally on Rn × Rm × Rq. Finally, we
show that the corresponding results also hold if the conditions are enforced on the
subset Z = X × U × W only.
Part I: Consider two arbitrary points (x1, u, w1) and (x2, u, w2) that are element
of Rn × Rm × Rq with their corresponding outputs y1 = h(x1, u, w1) and y2 =
h(x2, u, w2). Define a smooth path c : [0, 1] → Rn parameterized by s joining x1
to x2 with c(0) = x1 and c(1) = x2. Define the smooth path of disturbances ω(s)
joining ω(0) = w1 and ω(1) = w2 by the straight line

ω(s) = w1 + s(w2 − w1), s ∈ [0, 1]. (7.9)

Note that this particular choice is valid since the disturbance can generally be treated
as an external variable that does not depend on any dynamics; therefore, the path
connecting w1 and w2 can be of arbitrary form. Given the tuple (c(s), u, ω(s)), we
can apply the dynamics (7.1) and obtain

c+(s) = f(c(s), u, ω(s)), (7.10a)
ζ(s) = h(c(s), u, ω(s)), (7.10b)

1Geodesic convexity is a natural generalization of convexity for sets to Riemannian manifolds,
which reduces to convexity for the special case of constant metrics. For a formal definition, see,
e.g., [SP12, Def. 2.6].
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where the corresponding output ζ yields a smooth path joining ζ(0) = y1 and
ζ(1) = y2. By differentiating (7.10) with respect to s ∈ [0, 1], from the chain rule
and the linearizations (7.3) we obtain the differential dynamics

δ+
x = A(c(s), u, ω(s))δx +B(c(s), u, ω(s))δw, (7.11a)
δy = C(c(s), u, ω(s))δx +D(c(s), u, ω(s))δw, (7.11b)

where the path derivatives are defined as δ+
x := dc+/ds(s), δx := dc/ds(s), δw :=

dω/ds(s), and δy := dζ/ds(s). Formally, each δi with i ∈ {x,w, y} denotes a vector
on the tangent space of the domain of i at i, compare [MS17; MS18]. We make the
following claim.

Claim 7.1. Let (7.7) hold for some (x, u, w) ∈ Rn × Rm × Rq. Then, V (x, δx) =
δ⊤

x P (x)δx satisfies

V (x+, δ+
x ) ≤ ηV (x, δx) + |δw|2Q + |δy|2R. (7.12)

Proof. By applying the definition of V together with the differential dynamics
(7.11a)-(7.11b) to (7.12), we obtain

[
δx

δw

]⊤ [
A⊤P+A− ηP A⊤P+B
B⊤P+A B⊤P+B

] [
δx

δw

]
⪯
[
δx

δw

]⊤ [
C⊤RC C⊤RD
D⊤RC Q+D⊤RD

] [
δx

δw

]
,

which clearly is equivalent to (7.7).

Consequently, by definition of V and the path derivatives (δx, δw, δy), from (7.12) it
follows that ∣∣∣∣∣dc+

ds
(s)
∣∣∣∣∣
2

P+

≤ η

∣∣∣∣∣dcds(s)
∣∣∣∣∣
2

P

+
∣∣∣∣∣dωds (s)

∣∣∣∣∣
2

Q

+
∣∣∣∣∣dζds (s)

∣∣∣∣∣
2

R

. (7.13)

This differential property can now be transformed into an incremental property
by integration over s ∈ [0, 1] and utilizing tools from Riemannian geometry. In
particular, we treat P as a Riemannian2 metric with which the manifold Rn is
endowed. Let

E(c) :=
∫ 1

0

dc

ds
(s)⊤P (c(s))dc

ds
(s)ds (7.14)

denote the Riemannian energy associated with the path c. The minimizer of E(c)
over all possible smooth paths joining c(0) to c(1) is given by a (possibly non-unique)
geodesic γ, existence of which is ensured by the uniformly boundedness of P in (7.8),
compare [MS17, Lem. 1] and see also [SP12, Lem. A.1].
Now, consider (7.13) and choose c = γ; it hence follows that c+(s) = f(γ(s), u, ω(s))
by (7.10a). Let γ+ denote the geodesic at the subsequent time instant joining the
successor states x+

1 = f(x1, u, w1) and x+
2 = f(x2, u, w2), where we point out that in

2A Riemannian metric P : Rn → Rn×n is a symmetric covariant 2-tensor with positive defi-
nite values that defines local notions of length, angle, and orthogonality by the inner product
⟨δ1, δ2⟩x = δ⊤

1 P (x)δ2 for any two tangent vectors δ1, δ2, compare [SP12; MS17], and see also
[GHL04] for further details.
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general c+ ̸= γ+. However, by integration of (7.13) over s ∈ [0, 1] and the definition
of the Riemannian energy (7.14), we obtain

E(γ+) ≤ E(c+) ≤ ηE(γ) +
∫ 1

0

∣∣∣∣∣dωds (s)
∣∣∣∣∣
2

Q

ds+
∫ 1

0

∣∣∣∣∣dζds (s)
∣∣∣∣∣
2

R

ds, (7.15)

where the first inequality used the fact that c+ is a feasible candidate curve providing
an upper bound for the (minimal) energy E(γ+). In the following, we show that
U(x1, x2) = E(γ) satisfies the dissipation inequality (7.2b). First, exploiting our
particular choice of ω in (7.9) yields

∫ 1

0

∣∣∣∣∣dωds (s)
∣∣∣∣∣
2

Q

ds =
∫ 1

0
|w1 − w2|2Q ds = |w1 − w2|2Q . (7.16)

Now we focus on the output term in (7.15) and make the following claim.

Claim 7.2. The derivative dζ/ds(s) is constant in s ∈ [0, 1].

Proof. Given γ and ϕ, we can define the geodesic in transformed coordinates γ̄ :=
ϕ(γ). From (7.10b) and (7.4b), we have that

ζ(s) = h(ϕ−1(γ̄(s)), u, ω(s)) = h̄(γ̄(s), u, ω(s)) (7.17)

for all s ∈ [0, 1]. Taking the derivative of (7.17) with respect to s ∈ [0, 1] using the
chain rule yields

dζ

ds
(s) = dh̄

ds
(γ̄(s), u, ω(s)) = ∂h̄

∂x̄
(γ̄(s), u, ω(s))dγ̄

ds
(s) + ∂h̄

∂w
(γ̄(s), u, ω(s))dω

ds
(s).

Assumption 7.2 ensures that h̄ is affine in x̄, w, and consequently, the partial deriva-
tives ∂h̄/∂x̄(γ̄(s), u, ω(s)) and ∂h̄/∂w(γ̄(s), u, ω(s)) do not depend on s; furthermore,
∂h̄/∂x̄i(γ̄(s), u, ω(s)) = 0 for all i = 1, . . . , n − p. Since, in addition, dω/ds(s) is
constant in s ∈ [0, 1] due to (7.9), it remains to show that this is also the case for
dγ̄i/ds(s) for all i = n− p+ 1, . . . , n.
To this end, recall that γ̄ = ϕ(γ). Hence, by the chain rule,

dγ̄

ds
(s) = ∂ϕ

∂x
(γ(s))dγ

ds
(s).

Due to our choice of P in (7.5), it therefore holds that

Ē(γ̄) :=
∫ 1

0

dγ̄

ds
(s)⊤P̄ (γ̄(s))dγ̄

ds
(s)ds

=
∫ 1

0

dγ

ds
(s)⊤∂ϕ

∂x
(γ(s))⊤P̄ (ϕ(γ(s)))∂ϕ

∂x
(γ(s))dγ

ds
(s)ds

=
∫ 1

0

dγ

ds
(s)⊤P (γ(s))dγ

ds
(s)ds

= E(γ).
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Thus, given a minimizing geodesic γ for E(γ), the curve γ̄ is a minimizing geodesic
for Ē(γ̄) (by contradiction). Consequently, we have that γ̄(s) = ϕ(γ(s)) is a solution
to the geodesic equation [GHL04, Def. 2.77], i.e., to the differential system

d2γ̄k

ds2 (s) −
∑
i,j

Γ̄k
i,j(γ̄(s))dγ̄i

ds
(s)dγ̄j

ds
(s) = 0, k = 1, . . . , n. (7.18)

The objects Γ̄k
i,j represent the Christoffel symbols associated with the metric P̄ which

are, following [GHL04, Prop 2.54] and Appendix A1.1 in the report (arXiv) version
of the article [SP24], defined by

Γ̄k
i,j(x̄) = 1

2

n∑
a=1

Ȳk,a(x̄)
(
∂P̄a,i

∂x̄j

(x̄)+∂P̄a,j

∂x̄i

(x̄) − ∂P̄i,j

∂x̄a

(x̄)
)

(7.19)

with the shorthand notation Ȳ (x̄) = P̄ (x̄)−1 and Ȳk,a the (k, a)-element of Ȳ . Note
that in (7.18), we are only interested in the states of the geodesic γ̄ that appear in
the output (7.17), i.e., γ̄k for all k = n − p + 1, . . . , n. For ease of notation, let us
define r := n − p + 1 for the remainder of this proof. Calculating the respective
Christoffel symbols reveals that

Γ̄k
ij = 0, k = r, . . . , n, (7.20)

which is a direct consequence of the proposed block-diagonal structure of P̄ in (7.6);
to see this, note the following: First, the fact that P̄ is block-diagonal implies that
also Ȳ = P̄−1 is block-diagonal, and thus Ȳi,j = P̄i,j = 0 for i < r and j ≥ r (and
vice versa); second, each derivative ∂P̄i,j/∂x̄a = 0 if a ≥ r since P̄ is independent of
x̄y; third, each derivative ∂P̄a,i/∂x̄j = 0 if a, i ≥ r, and j < r since P̄y is constant.
Consequently, from (7.20), we have that all the Christoffel symbols affecting the
states γ̄i, i = r, . . . , n vanish, and hence our special choice of P̄ leads to a decoupling
of the geodesic equation (7.18); in particular, we obtain the simple second-order
homogeneous differential equation

d2γ̄k

ds2 (s) = 0, k = r, . . . , n,

which directly implies that dγ̄i/ds(s) is constant in s ∈ [0, 1] for all i = r, . . . , n and
hence yields the desired result.

Consequently, the output term in (7.15) consists only of terms constant in s ∈ [0, 1].
Hence, by the Fundamental Theorem of Calculus, we obtain

∫ 1

0

∣∣∣∣∣dζds (s)
∣∣∣∣∣
2

R

ds = (ζ(1) − ζ(0))⊤R(ζ(1) − ζ(0)) = |y1 − y2|2R . (7.21)

Applying (7.16) and (7.21) to (7.15) then yields

E(γ+) ≤ ηE(γ) + |w1 − w2|2Q + |y1 − y2|2R, (7.22)

which establishes the dissipation inequality (7.2b) with U(x1, x2) = E(γ).
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Part II: We now show satisfaction of (7.2a) and start with the upper bound. Note
that since γ is the path of minimum energy joining x1 to x2, every other path
yields a higher amount of energy, which clearly also applies to the straight line
l(s) = x1 + s(x2 − x1). Therefore,

E(γ) ≤ E(l) =
∫ 1

0
(x1 − x2)⊤P (l(s))(x1 − x2)ds ≤ |x1 − x2|2P , (7.23)

where the last step follows from uniform boundedness of P in (7.8). For the lower
bound, again by uniform boundedness of P , we have

E(γ) ≥
∫ 1

0

∂γ

ds
(s)⊤P

∂γ

ds
(s)ds (7.24)

≥
∫ 1

0

∂l

ds
(s)⊤P

∂l

ds
(s)ds = |x1 − x2|2P , (7.25)

where for the second inequality we exploited the fact that the minimizer of the
expression on the right hand side of (7.24) is given by the straight line l since P
is constant. To verify this, recall that each minimizer of the Riemannian energy
E solves the geodesic equation (7.18); now observe that all the Christoffel symbols
(7.19) vanish if the underlying metric is constant. Therefore, (7.23) and (7.25)
establish (7.2a). Together with the first part of this proof, we can thus conclude
that U(x1, x2) = E(γ) is an i-IOSS Lyapunov function satisfying (7.2a) and (7.2b)
for all (x1, u, w1), (x2, u, w2) ∈ Rn × Rm × Rq.
Part III: Finally, we note that the results from Part I and Part II, (including the
Claims 7.1 and 7.2) can be easily restricted to any subset X × U ×W if it is ensured
that the minimizing geodesic connecting any two points on each of the subsets X
and W stays in the respective subset for all s ∈ [0, 1]. This is indeed the case for X
being weakly geodesically convex [SP12, Def. 2.6] and W being convex (as long as
ω is chosen according to (7.9)). Provided that this applies, if conditions (7.7)-(7.8)
are enforced on the subset Z = X × U × W , we have that U(x1, x2) = E(γ) is
a quadratically bounded i-IOSS Lyapunov function satisfying Definition 7.1 for all
(x1, u, w1), (x2, u, w2) ∈ Z, which completes this proof.

We point out that for a fixed transformation ϕ and a constant η ∈ (0, 1), condi-
tions (7.7)-(7.8) reduce to linear constraints that need to be verified over the full
domain Z = X × U × W . Computationally tractable sufficient conditions in terms
of LMIs can then be obtained by using, for example, LPV embeddings [KT21], SOS
relaxations [Par03; WMB22], or simple gridding methods. In case ϕ is treated as a
decision variable (which may be less restrictive due to this additional degree of free-
dom), the conditions of Theorem 7.1 can be reformulated as a convex optimization
problem in a similar manner as in [YWM22].
The following corollary of Theorem 7.1 provides even simpler conditions for the case
where h in (7.1b) is affine in (x,w) and we restrict ourselves to a quadratic (instead
of quadratically bounded) i-IOSS Lyapunov function.
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Corollary 7.1. Let Assumption 7.1 hold, the output function h in (7.1b) be affine in
(x,w), and X and W be convex. If there exist η ∈ (0, 1) and symmetric matrices
P ≻ 0 and Q,R ⪰ 0 such that[

A⊤PA− ηP − C⊤RC A⊤PB − C⊤RD
B⊤PA−D⊤RC B⊤PB −Q−D⊤RD

]
⪯ 0 (7.26)

holds for all (x, u, w) ∈ Z, then U(x1, x2) = |x1 − x2|2P is an i-IOSS Lyapunov
function on Z and satisfies Definition 7.1 with P = P = P .

Proof. The result follows immediately by setting x̄y = x̄ = ϕ(x) = x in the proof
of Theorem 7.1, which can then be significantly streamlined (without the need for
Assumption 7.2), compare also the proof of Theorem 7.2 for the continuous-time
case below. As a direct consequence, we obtain (7.22) with E(γ) = |x1 − x2|2P
and E(γ+) = |x+

1 − x+
2 |2P since P is constant (resulting in the geodesics being

straight lines), which lets us conclude that U(x1, x2) = |x1 − x2|2P is a quadratic
i-IOSS Lyapunov function that satisfies Definition 7.1 with P = P = P for all
(x1, u, w1), (x2, u, w2) ∈ Z.

Some remarks are in order.

Remark 7.2 (Relation to dissipativity). The proof of Theorem 7.1 introduces a dif-
ferential version of IOSS (see Claim 7.1). This characterization is equivalent to the
notion of differential (Q,S,R)-dissipativity [Ver+23, Def. 3] with S = 0, compare
also [KT21; FS13]. However, as pointed out in [Ver+23, Rem. 7], the correspond-
ing works crucially rely on R ⪯ 0 in order to derive incremental results by simply
exhausting the Cauchy-Schwartz inequality, see [KT21, Lem. 16] and compare also
[MS18, Thm. 1] and [WMB22, Thm. 2.4]. Note that in our case, this would restrict
the results to open-loop stable systems (since (7.2b) would need to hold with R = 0,
which directly implies i-ISS of system (7.1)). Moreover, this would result in the cost
function (3.6) not being positive definite, which generally can lead to an ill-defined
optimization problem (3.4). In contrast, we circumvent this technical condition by
suitably relating the state and output manifolds as it was similarly done in [SP24;
YWM22] for observer design. More specifically, from Assumption 7.2, i.e., by im-
posing the existence of coordinates x̄ in which the output function h̄ is affine (which
directly implies that h̄ is totally geodesic by assumption, compare [Vil70]), and due
to our choice of the metric P̄ (x̄) according to Theorem 7.1 (or Corollary 7.1), we
immediately obtain an equality relation between the integral of the differential supply
rates and the incremental supply rates, see (7.16) and (7.21) for details. Conse-
quently, as a side result, we note that Theorem 7.1 (and Corollary 7.1) with η = 1
can be used to verify incremental dissipativity of system (7.1) subject to a positive
definite supply rate, relaxing [Ver+23, Rem. 7].

Remark 7.3 (Extensions). To further generalize the parametrization of P̄ (x̄) with
respect to x̄, we note that the following minor extension of Theorem 7.1 is possible
if, e.g., h̄(x̄) = x̄y (neglecting u and w for ease of presentation). We could choose

P̄ (x̄) =
[
P̄x(x̄x) 0

0 P̄y(x̄y)

]
(7.27)
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with P̄y,1 ⪯ P̄y(x̄y) ⪯ P̄y,2 uniformly for all possible x̄y and some constant matrices
P̄y,1, P̄y,2 ≻ 0; that is, P̄ in (7.6) with an additional dependency of P̄y on x̄y. Then,
the geodesic γ̄ minimizes the two independent functionals

Ē(γ̄) =
∫ 1

0

dγ̄x

ds
(s)⊤P̄x(γ̄x(s))dγ̄x

ds
(s)ds+

∫ 1

0

dγ̄y

ds
(s)⊤P̄y(γ̄y(s))dγ̄y

ds
(s)ds. (7.28)

Note that a direct consequence of P̄y(x̄y) not being constant is that Claim 7.2 does
not hold in this case. However, by additionally imposing that R ⪯ P̄y(x̄y) in (7.7),
the output functional in (7.13) can be bounded by

∫ 1

0

∣∣∣∣∣dζds (s)
∣∣∣∣∣
2

R

ds ≤
∫ 1

0

dγ̄y

ds
(s)⊤P̄y(γ̄y(s))dγ̄y

ds
(s)ds, (7.29)

i.e., the same functional that also appears in (7.28) and hence is minimized by γ̄.
Then, by following similar arguments as in the second part of the proof of Theo-
rem 7.1 (in particular, exploiting (7.29) and uniform boundedness of P̄y), one can
show that ∫ 1

0

∣∣∣∣∣dζds (s)
∣∣∣∣∣
2

R

ds ≤ |y1 − y2|2P̄y,2

and subsequently derive a similar i-IOSS Lyapunov function as in Theorem 7.1 that
satisfies Definition 7.1. Finally, we note that one may relax Assumption 7.2, i.e.,
affinity of h̄, by imposing that h̄ is a Riemannian submersion, compare [SP24].

Remark 7.4 (Closed-form expression). Note that Theorem 7.1 yields only an im-
plicit i-IOSS Lyapunov function U , which is due to the fact that we have no analyt-
ical closed-form expression for the Riemannian energy of the minimizing geodesic.
However, note also that this is not needed for the design of Lyapunov-based MHE
(or FIE) schemes, since we only require knowledge of the discount factor η and the
matrices P ,Q,R to design the MHE cost function (and additionally P to compute
the minimal horizon length for guaranteed RGES of MHE, see [Sch+23, Sec. III]
for further details). Similar considerations apply if Theorem 7.1 is used to compute
the KL-functions of the standard i-IOSS bound. Again, one only needs to know the
matrices P , P ,Q,R and use (7.2a) after repeated application of the dissipation in-
equality (7.2b) to obtain the desired result. If nevertheless an analytical expression
for the i-IOSS Lyapunov function U is desired, Corollary 7.1 can be used to obtain
a quadratic function.

Remark 7.5 (Alternative derivation). An alternative way to compute a quadratic
i-IOSS Lyapunov function is to first design an RGES observer based on, e.g., [SP16;
YWM22; Ast+21]. Then, under certain conditions, one can show that the cor-
responding Lyapunov function also serves as an i-IOSS Lyapunov function, see
[KMA21, Prop. 4] and compare also [SM23d, Sec. VII]. However, these sufficient
conditions are crucially limited to quadratic Lyapunov functions and additive dis-
turbances in the dynamics (7.1a), and hence are only applicable to a smaller class
of detectable systems (in comparison to Theorem 7.1).
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7.1.2. i-iIOSS Lyapunov functions for continuous-time systems

We consider the continuous-time, nonlinear perturbed system from (3.7), that is,

ẋ(t) = f(x(t), u(t), w(t)), x(0) = χ, (7.30a)
y(t) = h(x(t), u(t), w(t)), (7.30b)

with continuous time t ≥ 0, state x(t) ∈ X ⊆ Rn, initial condition χ ∈ X , con-
trol input u(t) ∈ U ⊆ Rm, (generalized) disturbance input w(t) ∈ W ⊆ Rq,
and output y(t) ∈ Y ⊆ Rp. Throughout the following, for simplicity we as-
sume that for any χ ∈ X , and functions u ∈ MU and w ∈ MW (where we re-
call that MU and MW contain all measurable, locally essentially bounded func-
tions defined on R≥0 and taking values in U and W , respectively), the solution
x(t, χ, u, w) is unique, exists globally on R≥0, and satisfies x(t, χ, u, w) ∈ X and
y(t, χ, u, w) = h(x(t, χ, u, w), u(t), w(t)) ∈ Y for all t ≥ 0, see also Section 3.2.1 for
more details regarding the setup. Furthermore, we define Z := X × U × W .
We impose the following regularity properties on the system and its input signals.

Assumption 7.3 (Regularity conditions). The function f is continuously differen-
tiable in all of its arguments, h is affine in (x,w), and the sets X and W are
convex. Furthermore, the input signals u and w are piecewise3 right-continuous.

We comment on Assumption 7.3 below Remark 7.6. In the remainder of this section,
we focus on the construction of smooth, quadratically bounded i-iIOSS Lyapunov
functions.

Definition 7.2 (Quadratically bounded i-iIOSS Lyapunov function). A smooth func-
tion U : X × X → R≥0 is a quadratically bounded i-iIOSS Lyapunov function on
Z if it is continuous and there exist matrices P , P ,Q,R ≻ 0 and a constant κ > 0
such that

|x1 − x2|2P ≤ U(x1, x2) ≤ |x1 − x2|2P , (7.31a)

U̇(x1, x2) ≤ −κU(x1, x2) + |w1 − w2|2Q + |h(x1, u, w1) − h(x2, u, w2)|2R (7.31b)

for all (x1, u, w1), (x2, u, w2) ∈ Z.

Remark 7.6 (Integral form). An i-iIOSS Lyapunov function satisfying Definition 7.2
is also an i-iIOSS Lyapunov function in the sense of Definition 2.3 using a dis-
sipation inequality in integral form, compare also Assumption 3.1). To see this,
consider any χ1, χ2 ∈ X , u ∈ MU , and w1, w2 ∈ MW satisfying Assumption 7.3
and define the corresponding trajectories xi(t) = x(t, χi, u, wi) and output signals

3If the results contained in this section are to be applied to the methods presented in Section 3.2, it
must be ensured that the estimated disturbance w̄ti

in the MHE problem in (3.12) is also piece-
wise right-continuous. In practice, this is immediately the case when standard discretization
methods are used to solve (3.12).
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yi(t) = y(t, χi, u, wi), t ≥ 0, i = 1, 2. Now, let v : R≥0 → R≥0 be the solution of the
initial value problem

v̇(t) = −κv(t) + |w1(t) − w2(t)|2Q + |y1(t) − y2(t)|2R , v(0) = U(χ1, χ2).

Solving for v yields

v(t) = e−κtv(0) +
∫ t

0
e−κ(t−τ)

(
|w1(t) − w2(t)|2Q + |y1(t) − y2(t)|2R

)
dτ.

Since the property in (7.31b) applies, from the standard comparison principle we
know that U(x1(t), x2(t)) ≤ v(t) for all t ≥ 0. Recalling that v(0) = U(χ1, χ2)
establishes (2.19b), where η = e−κ.

The construction of i-iIOSS Lyapunov functions satisfying Definition 7.2 can con-
ceptually be performed similarly to the discrete-time case in Section 7.1.1—namely,
by applying arguments from contraction theory and Riemannian geometry. For
clarity of presentation, however, in the following we restrict ourselves to systems
where the output equation (7.30b) is already affine in (x,w) as stated in Assump-
tion 7.3, without considering a state-space transformation and partitioning as in
Section 7.1.1, compare also Remark 7.7 below. This corresponds to the condition of
Corollary 7.1 for the discrete-time case and allows us to easily transfer a differential
property to an incremental one (it basically ensures that the output h evaluated
along the shortest path between any two points x1, x2 ∈ X is a linear combination
of the respective outputs y1, y2 for any point of that path). Note again that this
is directly satisfied if a subset (or linear combination) of the system state is mea-
sured, which is the case for many practical applications, compare the examples in
Section 3.4. Furthermore, it is still quite general in the sense that it covers several
observable canonical forms, see [YWM22, Rem. 1].
We define the linearizations of (7.30) at a given point (x, u, w) ∈ Z as

A(x, u, w) = ∂f

∂x
(x, u, w), B(x, u, w) = ∂f

∂w
(x, u, w),

C(x, u, w) = ∂h

∂x
(x, u, w), D(x, u, w) = ∂h

∂w
(x, u, w),

(7.32)

where we omit the dependency of A,B,D,C on (x, u, w) whenever it is clear from
the context. The following result provides LMI conditions for the construction of
quadratic Lyapunov functions.

Theorem 7.2. Let Assumption 7.3 be satisfied. If there exist matrices P,Q,R ≻ 0
and a constant κ > 0 such that[

PA+ A⊤P + κP − C⊤RC PB − C⊤RD
B⊤P −D⊤RC −D⊤RD −Q

]
⪯ 0 (7.33)

holds for all (x, u, w) ∈ Z, then U(x1, x2) = |x1 −x2|2P is a smooth i-iIOSS Lyapunov
function on Z and satisfies Definition 7.2 with P = P = P .
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The proof follows similar lines as the proofs of, e.g., [MS18, Th. 1] and Theorem 7.1
above (with technical differences resulting from the continuous-time setup), compare
also [MS17; Sin+17].

Proof of Theorem 7.2. For any pair of points x1, x2 ∈ X , let Ξ(x1, x2) denote the set
of piecewise smooth curves [0, 1] → X connecting x1 and x2 such that c ∈ Ξ(x1, x2)
satisfies c(0) = x1 and c(1) = x2.
Given any χ1, χ2 ∈ X , u ∈ MU , and w1, w2 ∈ MW satisfying Assumption 7.3,
we consider the trajectories xi(t) = x(t, χi, u, wi) and their output signals yi(t) =
y(t, χi, u, wi), t ≥ 0, i = 1, 2.
At any fixed time t = t⋆ ≥ 0, let us consider the following smoothly parameterized
paths for s ∈ [0, 1]: the path of states c(t, s) ∈ Ξ(x1(t), x2(t)) and the paths of
disturbances ω(t, s) = w1(t) + s(w2(t) − w1(t)). For t ∈ [t⋆, t⋆ + ϵ) (with ϵ > 0
arbitrarily small to guarantee local existence of solutions and continuity of u,w over
t ∈ [t⋆, t⋆ + ϵ)) and each fixed s ∈ [0, 1], the path c(t, s) evolves according to (7.30)
such that

ċ(t, s) = f(c(t, s), u(t), ω(t, s)), (7.34a)
ζ(t, s) = h(c(t, s), u(t), ω(t, s)), (7.34b)

where ζ(t, s) satisfies y1(t) = ζ(t, 0) and y2(t) = ζ(t, 1) for each t ∈ [t⋆, t⋆ + ϵ).
Differentiating (7.34) with respect to s ∈ [0, 1] yields (after interchanging the order
of differentiation of t and s)

δ̇x = Aδx +Bδw, (7.35a)
δy = Cδx +Dδw (7.35b)

for all t ∈ [t⋆, t⋆ + ϵ) using the substitutions δx := dc/ds(t, s), δw := dω/ds(t, s), and
δy := dζ/ds(t, s), and where the matrices A,B,C,D are the linearizations of f and h
as in (7.32) evaluated at (c(t, s), u(t), ω(t, s)). Assuming that (c(t, s), u(t), ω(t, s)) ∈
X × U × W for all t ∈ [t⋆, t⋆ + ϵ), one can easily verify (by exploiting (7.35)) that
satisfaction of the pointwise LMI condition (7.33) implies that

d

dt
|δx|2P ≤ −κ|δx|2P + |δw|2Q + |δy|2R (7.36)

for all t ∈ [t⋆, t⋆ + ϵ). By integrating (7.36) over s ∈ [0, 1], interchanging integration
and differentiation, and defining E(c(t, s)) :=

∫ 1
0 |dc/ds(t, s)|2Pds, we obtain

Ė(c(t, s)) ≤ −κE(c(t, s)) +
∫ 1

0

∣∣∣∣∣dωds (t, s)
∣∣∣∣∣
2

Q

ds+
∫ 1

0

∣∣∣∣∣dζds (t, s)
∣∣∣∣∣
2

R

ds

for t ∈ [t⋆, t⋆ + ϵ). The integration over t ∈ [t⋆, t⋆ + ϵ) yields

E(c(t⋆ + ϵ, s)) − E(c(t⋆, s))

≤
∫ t⋆+ϵ

t⋆

−κE(c(t, s)) +
∫ 1

0

∣∣∣∣∣dωds (t, s)
∣∣∣∣∣
2

Q

ds+
∫ 1

0

∣∣∣∣∣dζds (t, s)
∣∣∣∣∣
2

R

ds

 dt. (7.37)
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Note that E(c(t, s)) can be interpreted as the Riemannian energy of the path c(t, s).
Since P is constant and X is convex, the shortest path γ(t, s) (with the minimum
energy E(γ(t, s)) over all possible curves c(t, s) ∈ Ξ(x1(t), x2(t))) is, at each fixed
t ≥ 0, always given by the straight line connecting x1(t) and x2(t), i.e., γ(t, s) =
x1(t)+s(x2(t)−x1(t)). Now let c(t⋆, s) = γ(t⋆, s) in (7.37) and note that E(γ(t, s)) ≤
E(c(t, s)) for all t ∈ [t⋆, t⋆ + ϵ). Therefore, by taking ϵ → 0, we have that

Ė(γ(t⋆, s)) ≤ −κE(γ(t⋆, s)) +
∫ 1

0

∣∣∣∣∣dωds (t⋆, s)
∣∣∣∣∣
2

Q

ds+
∫ 1

0

∣∣∣∣∣dζds (t⋆, s)
∣∣∣∣∣
2

R

ds.

By construction of γ and ω (in particular, the fact that their derivatives with respect
to s ∈ [0, 1] are constant in s ∈ [0, 1]), it follows that

E(γ(t⋆, s)) =
∫ 1

0

∣∣∣∣∣dγds (t⋆, s)
∣∣∣∣∣
2

P

ds = |x1(t⋆) − x2(t⋆)|2P ,

and similarly, ∫ 1

0

∣∣∣∣∣dωds (t⋆, s)
∣∣∣∣∣
2

Q

ds = |w1(t⋆) − w2(t⋆)|2Q .

Using the fact that h is affine in (x,w) by Assumption 7.3 (which implies that C
and D are constant in s), we also obtain

∫ 1

0

∣∣∣∣∣dζds (t⋆, s)
∣∣∣∣∣
2

R

ds = |y1(t⋆) − y2(t⋆)|2R .

Since t⋆ ≥ 0 was arbitrary, using the definition U(x1, x2) := |x1 − x2|2P we can infer
that

U̇(x1(t), x2(t)) ≤ −κU(x1(t), x2(t)) + |w1(t) − w2(t)|2Q + |y1(t) − y2(t)|2R
for each t ≥ 0. Since xi(t) and yi(t), i = 1, 2 correspond to solutions of (7.30) for
arbitrary χ1, χ2 ∈ X , u ∈ MU , and w1, w2 ∈ MW satisfying Assumption 7.3, we
can conclude that U satisfies (7.31a)-(7.31b) for all (x1, u, w1), (x2, u, w2) ∈ Z with
P = P = P , which establishes the statement and finishes this proof.

For a fixed value of κ > 0, condition (7.33) represents an infinite set of LMIs (note
that (7.33) is linear in the remaining decision variables P,Q,R). These may be solved
using a finite set of LMIs and standard convex analysis tools based on semidefinite
programming (SDP), e.g., by applying SOS relaxations [Par03], by embedding the
nonlinear behavior in an LPV model [ST23], or by suitably gridding the state space
and verifying (7.33) on the grid points.

Remark 7.7 (Generalizations). The requirement in Theorem 7.2 for P to be constant
can be relaxed to a (block diagonal) state-dependent matrix P (x) similar to Theo-
rem 7.1 in discrete time if the system (7.30) is in some observer canonical form
(or admits an appropriate state-space transformation), see Section 7.1.1 for more
details. In this case, the LMI condition (7.33) can be accordingly modified to account
for a state-dependent matrix P (x), similar to, e.g., [MS18, Prop. 1].
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Remark 7.8 (Dissipativity). The LMI condition (7.33) can be modified to verify more
general notions such as differential and incremental dissipativity (see, e.g., [Ver+23,
Def. 2, Def. 3]). Here, we note that Theorem 7.2 is a generalization of established
results in the sense that the LMI condition (7.33) is not restricted to certain supply
rates with R ⪯ 0 (which is a technical requirement in [Ver+23] to deduce incremental
from differential properties [Ver+23, Rem. 7]), compare also Remark 7.2.

7.2. Persistence of excitation

In this section, we focus on general nonlinear discrete-time systems that are subject
to an additional unknown parameter. Identifying unknown parameters is a funda-
mental problem in control and signal processing, and various different approaches
exist, see, e.g., the book [Lju99] for an introduction and overview of this topic.
The ability to uniquely identify the system parameters requires that the measured
(input-output) data is informative enough, which is usually achieved by ensuring
that the input injected to the system is sufficiently exciting. In this context, PE is
an important technical concept to formalize this condition and is usually the basis
for the technical convergence analysis of corresponding identification or estimation
algorithms, see, e.g., [Bit84; GM86; LG90; LB24], and compare also [Lju99, Ch. 13]
and [Bes07, Ch. 1, Ch. 7]. While an a priori verification of PE is easily possible
for LTV systems and can be ensured by a suitable choice of the input signal, this
is generally impossible in the presence of nonlinear systems. For this reason, such
rather abstract PE conditions are usually replaced in practice by considering suit-
able heuristics that are evaluated online, for example based on a sensitivity analysis
as in [Liu+21], albeit at the price of losing formal guarantees.
In this section, we propose a method to online verify PE that is applicable to general
nonlinear systems, which is a major relaxation in this context. We construct and
evaluate a certain matrix recursion, which can be interpreted as the filtered linearized
regressor information that is visible at the output. These results are applicable for
the MHE schemes presented in Chapter 5 for joint state and parameter estimation,
but also generally useful to verify PE of nonlinear systems online. We treat the case
of constant parameters in Section 7.2.1 and the more general case of time-varying
parameters in Section 7.2.2.

7.2.1. Constant parameters

We consider nonlinear discrete-time system in the form of (5.1) for the special case
of constant parameters:

x(t+ 1) = f(x(t), u(t), w(t), p), x(0) = χ, (7.38a)
y(t) = h(x(t), u(t), w(t), p). (7.38b)

Here, we recall that t ∈ I≥0 is the discrete time, x(t) ∈ Rn is the state, χ ∈ Rn is
the initial condition, u(t) ∈ Rm is the control input, w(t) ∈ Rq is the disturbance
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input, y(t) ∈ Rp is the output, and p ∈ Ro is a constant parameter. Let4 Z :=
{(x, u, w, p) ∈ X × U × W × P} for some sets X ⊆ Rn, U ⊆ Rm, W ⊆ Rq, P ⊆ Ro.
We impose the following regularity condition on the system.

Assumption 7.4 (Differentiability). The functions f and h are continuously differ-
entiable on Z.

Assumption 7.4 essentially allows us to apply the mean-value theorem. To this end,
for any z1, z2 ∈ Z, let zs(s) := z1 + s(z2 − z1) for s ∈ [0, 1] and define

A(z1, z2) :=
∫ 1

0

∂f

∂x
(zs(s))ds, C(z1, z2) :=

∫ 1

0

∂h

∂x
(zs(s))ds,

B(z1, z2) :=
∫ 1

0

∂f

∂w
(zs(s))ds, D(z1, z2) :=

∫ 1

0

∂h

∂w
(zs(s))ds,

E(z1, z2) :=
∫ 1

0

∂f

∂p
(zs(s))ds, F (z1, z2) :=

∫ 1

0

∂h

∂p
(zs(s))ds.

(7.39)

We require some boundedness properties of the terms in (7.39).

Assumption 7.5 (Bounded linearizations). There exist constants B̄, C̄, D̄ ≥ 0 such
that |B(z1, z2)| ≤ B̄, |C(z1, z2)| ≤ C̄, |D(z1, z2)| ≤ D̄ for all z1, z2 ∈ Z.

Note that Assumption 7.5 is naturally satisfied for special classes of systems (e.g., for
systems with additive disturbances w in (7.38) and where the output equation h in
(7.38b) is linear in x, which renders B,C,D constant) or generally if Z is compact.

Assumption 7.6 (State detectability). There exists a mapping L : Z × Z → Rn×p,
a symmetric matrix P ≻ 0, and a constant η ∈ (0, 1) such that the matrix

Φ(z1, z2) := A(z1, z2) + L(z1, z2)C(z1, z2) (7.40)

satisfies
Φ(z1, z2)⊤PΦ(z1, z2) ⪯ ηP (7.41)

for all z1, z2 ∈ Z. Furthermore, there exists L̄ > 0 such that |L(z1, z2)| ≤ L̄ for all
z1, z2 ∈ Z.

Remark 7.9 (State detectability). Assumption 7.6 is motivated by linear systems
theory, where detectability is equivalent to the existence of an output injection term
which renders the error system asymptotically stable. For any fixed constant η ∈
(0, 1), by using the Schur complement and the definition Y (z1, z2) := PL(z1, z2),
condition (7.41) can be transformed into an infinite set of LMIs (linear in the deci-
sion variables P and Y ). Then, these may be solved under a suitable parameteriza-
tion of Y (e.g., polynomial in z1, z2) using a finite set of LMIs and standard convex
analysis tools based on SDP, e.g., by applying SOS relaxations [Par03], by embedding

4In contrast to Chapter 5, we do not require Z to possess a forward invariance property here, as
we restrict our analysis to system trajectories satisfying (7.42).
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the nonlinear behavior in an LPV model [ST23], or by suitably gridding the state
space and verifying (7.41) on the grid points (assuming compactness of Z). We also
want to emphasize that L does not need to be constant as it is usually required in
the context of (adaptive) observer design, where this is crucial to be able to perform
the observer update recursions online, compare, for example, [Ibr18]. Instead, the
additional degree of freedom resulting from the fact that L may depend on both z1
and z2 can be used, e.g., to compensate for nonlinear terms in A(z1, z2) or C(z1, z2)
from (7.39). Furthermore, if L(z1, z2) can be chosen such that Φ(z1, z2) in (7.40)
becomes constant, the condition (7.41) can be drastically simplified (to one single
LMI), compare the simulation example in Section 5.2.4. Finally, we note that the
additional uniform bound on L(z1, z2) is not restrictive under compactness of Z.

Remark 7.10 (Relation to i-IOSS in the sense of Assumption 5.1). In case the system
equations f and h are differentiable (Assumption 7.4) and admit bounded lineariza-
tions (Assumption 7.5), Assumption 7.6 implies the i-IOSS property from Assump-
tion 5.1 used in the context of MHE for joint state and parameter estimation (see
Chapter 5). This can be shown by applying similar arguments as in the proof of
Proposition 7.1 below. However, the resulting i-IOSS gains Q and R in (5.4) might
be overly conservative compared to a direct verification of Assumption 5.1 using the
methods from Section 7.1.1, compare also the examples in Sections 5.2.4 and 5.3.3.

Now, consider an arbitrary trajectory pair(
{(x1(t), u(t), w1(t), p1)}T −1

t=0 , {(x2(t), u(t), w2(t), p2)}T −1
t=0

)
∈ ZT × ZT (7.42)

for some T ∈ I≥0, where xi(t+ 1) = f(xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,T −1]. For
the sake of brevity, we define zi(t) := (xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,T −1], and

Zi :=
(
xi(0), pi, {u(t)}T −1

t=0 , {wi(t)}T −1
t=0

)
, i = 1, 2. (7.43)

Here, we note that each Zi (involving the initial condition xi(0)) uniquely defines
the sequence {zi(t)}T −1

t=0 (involving the states xi(t), t ∈ I[0,T −1]) for i = 1, 2 using the
system dynamics (7.38a).
The following result provides a sufficient condition for the trajectory pair (7.42) to
be persistently excited, in the sense that the PE condition characterizing the set ET

in Definition 5.1 holds.

Proposition 7.1. Let Assumptions 7.4, 7.5, and 7.6 hold. Consider some α > 0.
There exist matrices Sp, Pp, Qp, Rp ≻ 0 and a constant ηp ∈ (0, 1) such that the
following implication holds. If a trajectory pair as in (7.42) satisfies

CT (Z1, Z2) :=
T −1∑
t=0

µT −1−tY (t, z1(t), z2(t))⊤Y (t, z1(t), z2(t)) ≻ αIo (7.44)

for any T ∈ I≥0, where Y (t, z1, z2) := C(z1, z2)Y (t) + F (z1, z2) and

Y (t+1) = Φ(z1(t), z2(t))Y (t)+E(z1(t), z2(t))+L(z1(t), z2(t))F (z1(t), z2(t)) (7.45)
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for t ∈ I[0,T −1] with Y (0) = 0n×o, then the trajectory pair (7.42) also satisfies

|p1 − p2|2Sp ≤ ηT
p |x1(0) − x2(0)|2Pp

+
T −1∑
j=0

ηT −j−1
p

(
|w1(j) − w2(j)|2Qp + |y1(j) − y2(j)|2Rp

)
. (7.46)

Proof. Consider the trajectory pair (7.42) and the corresponding outputs yi(t) =
h(xi(t), u(t), wi(t), pi), i = 1, 2, t ∈ I[0,T −1]. Define ∆q(t) := q1(t) − q2(t) for
q ∈ {x,w, y}, t ∈ I[0,T −1] and ∆p := p1 − p2. In the following, we will omit the
dependency of terms on (z1(t), z2(t)), zi(t) = (xi(t), u(t), wi(t), pi), i = 1, 2 for the
sake of brevity. Using the mean-value theorem and the definitions from (7.39), we
obtain the incremental system

∆x(t+ 1) = A∆x(t) +B∆w(t) + E∆p, (7.47a)
∆y(t) = C∆x(t) +D∆w(t) + F∆p (7.47b)

for t ∈ I[0,T −1]. Now consider the transformed coordinates ζi(t) := xi(t) − Y (t)pi,
i = 1, 2, t ∈ I[0,T −1], where Y (t) is from (7.45). Define ∆ζi(t) = ζ1(t)−ζ2(t), t ∈ I[0,T ]
and note that

∆ζ(t) = ∆x(t) − Y (t)∆p. (7.48)

The difference ∆ζ(t) in (7.48) evolves according to

∆ζ(t+ 1) = ∆x(t+ 1) − Y (t+ 1)∆p
= A∆x(t) +B∆w(t) + E∆p− (ΦY (t) + E + LF )∆p. (7.49)

To the right-hand side of the previous equation, we add

0 = L(∆y(t) − ∆y(t)) = L(C∆x(t) +D∆w(t) + F∆p) − L∆y(t),

where L is from Assumption 7.6 and the latter equality follows by the incremental
output (7.47b). Hence, from (7.49) together with the definitions of Φ from (7.40)
and ∆ζ(t) from (7.48), we get

∆ζ(t+ 1) = Φ∆ζ(t) + (B + LD)∆w(t) − L∆y(t). (7.50)

Applying the norm | · |P =
√

| · |2P to both sides and using the triangle inequality
leads to

|∆ζ(t+ 1)|P ≤ |Φ∆ζ(t)|P + |(B + LD)∆w(t)|P + |L∆y(t)|P .

We square both sides, use the fact that for any ϵ > 0, (a+b)2 ≤ (1+ϵ)a2+ 1+ϵ
ϵ
b2 for all

a, b ≥ 0 by Young’s inequality, apply Assumption 7.6, and exploit that (∑n
i=1 ai)2 ≤

n
∑n

i=1 a
2
i for any n ∈ I≥0 and ai ≥ 0, i ∈ I[1,n] by Jensen’s inequality, which results

in

|∆ζ(t+ 1)|2P ≤ (1 + ϵ)η|∆ζ(t)|2P + 2(1 + ϵ)
ϵ

(
|(B + LD)∆w(t)|2P + |L∆y(t)|2P

)
.

(7.51)
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Now, consider the recursion

S(t+ 1) = µS(t) + Y (t, z1(t), z2(t))⊤Y (t, z1(t), z2(t)), t ∈ I[0,T −1] (7.52)

with S(0) = 0o×o, Y from (7.44), and some µ ∈ (0, 1) that will be specified below.
Using (7.52), we can write that

|∆p|2S(t+1) = µ|∆p|2S(t) + |Y (t, z1(t), z2(t))∆p|2. (7.53)

Furthermore, by the definition of Y , the transformation (7.48), and the incremental
output (7.47b), it follows that

|Y (t, z1(t), z2(t))∆p|2 = |∆y(t) −D∆w(t) − C∆ζ(t)|2

≤ 3|∆y(t)|2 + 3|D∆w(t)|2 + 3 C̄2

λmin(P ) |∆ζ(t)|2P , (7.54)

where the last step followed by applying Jensen’s inequality, Assumption 7.5, and
P from Assumption 7.6.
Now consider the function W (t, ζ1, ζ2, p1, p2) := |ζ1 − ζ2|2P + γ|p1 − p2|2S(t), t ∈ I[0,T ]
for some γ > 0. We choose the constants µ, ϵ, γ introduced above such that

µ = (1 + ϵ)η + 3γC̄2/λmin(P ) < 1. (7.55)

Using (7.51), (7.52), (7.54), and (7.55), we obtain that

W (t+ 1, ζ1(t+ 1), ζ2(t+ 1), p1, p2)
= |∆ζ(t+ 1)|2P + γ|∆p|2S(t+1)

≤ µ(|∆ζ(t)|2P + γ|∆p|2S(t)) + cϵ|(B + LD)∆w(t)|2P + 3γ|D∆w(t)|2

+ cϵ|L∆y(t)|2P + 3γ|∆y(t)|2

for all t ∈ I[0,T −1], where cϵ := 2(1 + ϵ)/ϵ. Due to satisfaction of Assumptions 7.5
and 7.6, we can find uniform Q,R ≻ 0 such that

|w̄|2Q ≥ cϵ|(B + LD)w̄|2P + 3γ|Dw̄|2, (7.56)
|ȳ|2R ≥ cϵ|Lȳ|2P + 3γ|ȳ|2 (7.57)

for all z1, z2 ∈ Z and all w̄ ∈ Rq, ȳ ∈ Rp. Consequently, we can infer that

W (t+ 1, ζ1(t+ 1), ζ2(t+ 1), p1, p2)
≤ µW (t, ζ1(t), ζ2(t), p1, p2) + |∆w(t)|2Q + |∆y(t)|2R (7.58)

for all t ∈ I[0,T −1]. The recursive application of (7.58) yields

W (T, ζ1(T ), ζ2(T ), p1, p2)

≤ µTW (0, ζ1(0), ζ2(0), p1, p2) +
T∑

j=1
µj−1

(
|∆w(T − j)|2Q + |∆y(T − j)|2R

)
. (7.59)



222 7.2. Persistence of excitation

By the definition of W , the recursion (7.52) with S(0) = 0, and the definition of CT

in (7.44), we obtain

W (T, ζ1(T ), ζ2(T ), p1, p2) ≥ γ∆p(T )⊤CT (Z, Z̃)∆p(T ) ≥ γα|∆p(T )|2. (7.60)

Furthermore, since Y (0) = 0, we also have that

W (0, ζ1(0), ζ2(0), p1, p2) = |∆x(0) − Y (0)∆p|2P + γ|∆p|2S(0) = |∆x(0)|2P . (7.61)

From (7.59) and the bounds (7.60) and (7.61), it hence follows that

αγ|∆p|2 ≤ µT |∆x(0)|2P +
T∑

j=1
µj−1

(
|∆w(T − j)|2Q + |∆y(T − j)|2R

)
,

which is equivalent to (7.46) with ηp = µ, Pp = P , Sp = αγIo, Qp = Q, Rp = R.
Noting that these choices are independent of the trajectories (7.42) and the value of
T concludes this proof.

The numerical verification of (7.44) requires the knowledge of both trajectories
in (7.42). This is not the case when applied to the estimation problem presented in
Section 5.2, since the true trajectory is generally unknown. However, we can make
local statements based on data from only one of the trajectories that are valid in a
surrounding neighborhood. To this end, we define the closed ball centered at some
Z ∈ X × P × UT × WT of radius r > 0 by B(Z, r) := {Z̃ ∈ X × P × UT × WT :
|Z − Z̃| ≤ r}. Then, we can evaluate (7.44) at (Z,Z) and define

OT (Z) := CT (Z,Z). (7.62)

Proposition 7.2. Let f and h in (7.38) be twice continuously differentiable on Z. If
|OT (Z)| ≥ α′ for some α′ > 0, then for any α ∈ (0, α′) there exists r > 0 small
enough such that |CT (Z, Z̃)| ≥ α for all Z̃ ∈ B(Z, r).

Proof. The proof follows similar lines as the proof of [FS23, Lemma 4.14]. For
Z ∈ X × P × UT × WT , T ∈ I≥1, let

M(Z, r) := max
Z̃∈B(Z,r)

∣∣∣∣∣ ∂CT

∂(Z, Z̃)
(Z, Z̃)

∣∣∣∣∣ .
Note that for each Z ∈ X × P × UT × WT and r > 0, M(Z, r) exists since every
function involved is sufficiently smooth and B(Z, r) is compact. By the mean-value
theorem and the definition of M(Z, r), we can infer that

|OT (Z) − CT (Z, Z̃)| ≤ M(Z, r)r. (7.63)

From the triangle inequality, it further follows that

|OT (Z) − CT (Z, Z̃)| ≥ |OT (Z)| − |CT (Z, Z̃)|. (7.64)

Combining (7.63) and (7.64), we obtain

|CT (Z, Z̃)| ≥ |OT (Z)| − |OT (Z) − CT (Z, Z̃)| ≥ α′ −M(Z, r)r.

Now, for any α ∈ (0, α′), there exists r > 0 small enough such that α′−M(Z, r)r = α,
which implies that |CT (Z, Z̃)| ≥ α and hence concludes this proof.



7. Verification methods 223

To summarize, for the trajectory pair (7.42) and Z1 and Z2 from (7.43), we can
make the following conclusion: if Z2 ∈ B(Z1, r) with r small enough, then

OT (Z1) ≥ α′ > 0 ⇒ CT (Z1, Z2) > α > 0

by Proposition 7.2, which implies that the trajectory pair (7.42) satisfies the PE
condition in (7.46) by Proposition 7.1 and hence is an element of the set ET as
characterized in Definition 5.1. This is particularly important in the context of MHE
for joint state and parameter estimation (Chapter 5), as the excitation condition
in (5.17) used in the MHE algorithm to update the parameter prior can now be
checked based on the estimated trajectory only—without knowing the (unknown)
true one.

Remark 7.11 (Local nature of Proposition 7.2). Proposition 7.2 provides a local re-
sult. Applied to the MHE scheme from Section 5.2, it requires small disturbances w
and a proper guess of the initial condition χ and the parameter p. Note, however,
that this is a standard condition for testing observability properties in the presence of
general nonlinear systems, compare, e.g., [SJ11] and [FS23]. Although the condition
on r is not explicitly verifiable in the context of state estimation for general non-
linear systems (due to the fact that r is unknown), checking OT (Z) ≥ α′ for some
α′ > 0 yields a reliable heuristic to test in practice if a trajectory pair is PE and sat-
isfies (7.46) or not, which is also evident in the simulation example in Section 5.2.4.
The construction of α in the proof of Proposition 7.2 also shows that larger values of
α′ should be chosen if the estimates are more uncertain and therefore r is expected
to be large, which is consistent with intuition.

The main advantage of the proposed method for online PE verification is that it
can be applied to general nonlinear systems and requires only a few and relatively
mild assumptions, which is a major relaxation compared to most of the related
literature; its only limitation lies in its local nature. In the following section, we
show how global statements about PE of trajectories can be made by restricting the
class of systems under consideration.

Special case: linearly parameterized systems

In this section, we consider the special case where the system (7.38) is linearly param-
eterized, subject to additive disturbances, and possesses a linear output equation;
more precisely, we assume that

f(x, u, w, p) = fs(x, u) +G(x, u)p+Bw, (7.65a)
h(x, u, w, p) = Cx+Dw (7.65b)

for some constant matrices B,C,D of appropriate dimensions. Note that this cor-
responds to a class of systems that is often considered in the adaptive observer
literature, see, for example, [Fra+20; Ekr+13], and it particularly covers the adap-
tive observer canonical form used in the works [TM23; EEZ16; MST01; MT92;
BG88] as special case.



224 7.2. Persistence of excitation

In the following, we show how for such systems the proof of Proposition 7.1 can
be modified to construct a mapping CT similar to (7.44) that satisfies the identity
CT (Z1, Z2) = CT (Z1, Z1) = OT (Z1) for any Z1, Z2 and thus enables global statements
about PE of a trajectory pair based on data of only one of the trajectories.
To this end, note that under Assumption 7.4, the definition G′(x, u, p) := G(x, u)p
represents a continuously differentiable function G′ : Rn×Rm×Ro → Rn. Therefore,
by applying the mean-value theorem, we can write that

∆G(x1, x2, u, p) := G(x1, u)p−G(x2, u)p = G(x1, x2, u, p)(x1 − x2), (7.66)

where
G(x1, x2, u, p) :=

∫ 1

0

∂G′

∂x
(x1 + s(x2 − x1), u, p)ds (7.67)

for all x1, x2 ∈ X and u ∈ U .

Assumption 7.7 (Regressor observability). There exists a constant matrix H such
that

G(x1, x2, u, p)⊤PG(x1, x2, u, p) ⪯ C⊤HC (7.68)
uniformly for all x1, x2 ∈ X , u ∈ U , and p ∈ P with P ≻ 0 from Assumption 7.6.

Remark 7.12 (Conditions on G). Assumption 7.7 essentially requires that changes in
the regressor G(x, u) are directly visible in the output, which is related to a matching
condition used in [Tyu+13; CR97; MT92]. Note that condition (7.68) is linear in H
and thus can be easily verified using standard LMI methods under compactness of
X , U , and P. For compact P, such H always exists for the special case where
G(x, u) = G(Cx, u), which includes the important classes of nonlinear adaptive
observer canonical forms that are often considered in the adaptive observer literature,
compare, e.g., [TM23; MST01; MT92; BG88].

Corollary 7.2. Consider the system (7.38) with f and h satisfying (7.65). Let As-
sumptions 7.4, 7.5, 7.6, and 7.7 hold and assume that Φ in (7.40) is constant. Then,
the conclusion from Proposition 7.1 remains valid if in the definition of CT in (7.44)
we replace Y by CY (t), where Y (t) is the matrix recursion

Y (t+ 1) = ΦY (t) +G(x1(t), u(t)), t ∈ I[0,T −1] (7.69)

with Y (0) = 0n×o. Furthermore, we have the identity CT (Z1, Z2) = CT (Z1, Z1).

Corollary 7.2 requires finding a map L in Assumption 7.6 such that Φ in (7.40)
becomes constant. This might be achieved by exploiting the fact that L can de-
pend on both z1 and z2, compare Remark 7.9 and see the simulation example in
Section 5.2.4.

Proof of Corollary 7.2. We start by performing the same steps that were applied in
the proof of Proposition 7.1 to derive (7.51), which yields

|∆ζ(t+ 1)|2P ≤ (1 + ϵ)η|∆ζ(t)|2P + 3(1 + ϵ)
ϵ

(
|(B + LD)∆w(t)|2P + |L∆y(t)|2P

)
+ 3(1 + ϵ)

ϵ
|∆G(x1(t), x2(t), u(t), p2)|2P , (7.70)
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where ∆G(x1(t), x2(t), u(t), p2) is from (7.66). Note that the only difference to (7.51)
is the presence of the additional term ∆G(x1(t), x2(t), u(t), p2) and the resulting
factor 3 (instead of 2). By application of (7.66), Assumption 7.7, the output function
(7.65b), and Jensen’s inequality, we obtain

|∆G(x1(t), x2(t), u(t), p2)|2P = |G(x1(t), x2(t), u(t), p2)∆x(t)|2P
≤ |C∆x(t)|2H = |∆y(t) −D∆w(t)|2H
≤ 2|∆y(t)|2H + 2|D∆w(t)|2H . (7.71)

The combination of (7.70) and (7.71) then yields

|∆ζ(t+ 1)|2P ≤ (1 + ϵ1)µ|∆ζ(t)|2P + 3(1 + ϵ1)
ϵ1

(
|(B + LD)∆w(t)|2P + 2|D∆w(t)|2H

)
+ 3(1 + ϵ1)

ϵ1

(
|L∆y(t)|2P + 2|∆y(t)|2H

)
. (7.72)

Note that (7.72) is again very similar to (7.51), with additional terms involving | · |2H .
From here, we apply the same steps that followed after (7.51) to derive (7.46).
It remains to show that CT (Z1, Z2) = CT (Z1, Z1) = OT (Z1). However, this immedi-
ately follows by noting that the recursion in (7.69) solely depends on the sequences
{x1(t)}T −1

t=0 and {u(t)}T −1
t=0 (i.e., Z1), which concludes this proof.

7.2.2. Time-varying parameters

In this section, we extend Proposition 7.1 to the case of time-varying parameters. In
particular, we consider the system description from (5.1) for the important special
case of parameter dynamics described by (5.2). The overall state-space model reads

x(t+ 1) = f(x(t), u(t), w(t), p(t)), x(0) = χ, (7.73a)
p(t+ 1) = p(t) +Bpw(t), p(0) = ξ, (7.73b)

y(t) = h(x(t), u(t), w(t), p(t)) (7.73c)

with states x(t) ∈ Rn, time-varying parameters p(t) ∈ Ro, initial conditions χ ∈ Rn

and ξ ∈ Ro, control input u(t) ∈ Rm, disturbance input w(t) ∈ Rq, output y(t) ∈ Rp,
and discrete time t ∈ I≥0. We define Z = {(x, u, w, p) ∈ X × U × W × P} for some
sets X ⊆ Rn, U ⊆ Rm, W ⊆ Rq, P ⊆ Ro.
In the following, we make use of the setup from Section 7.2.1. In particular, we
consider Assumption 7.4 (i.e., differentiability of f and h), which lets us construct
the matrices A,B,C,D,E, F in (7.39) that involve the Jacobians of f and h with
respect to x, w, and p. Moreover, we require Assumption 7.5 (i.e., uniform bounds
on B,C,D) and Assumption 7.6 (state detectability in terms of the existence of a
suitable output injection term); in the case of time-varying parameters, however,
we additionally require boundedness of the terms in (7.39) involving the partial
derivatives of f and h with respect to the parameters (i.e., E and F ).
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Assumption 7.8 (Bounded linearizations with respect to the parameter). There exist
constants Ē, F̄ ≥ 0 such that |E(z1, z2)| ≤ Ē and |F (z1, z2)| ≤ F̄ for all z1, z2 ∈ Z,
where E(z1, z2) and F (z1, z2) are defined in (7.39).

Now, consider an arbitrary trajectory pair(
{(x1(t), u(t), w1(t), p1(t))}T −1

t=0 , {(x2(t), u(t), w2(t), p2(t))}T −1
t=0

)
∈ ZT × ZT (7.74)

for some T ∈ I≥0, where xi(t + 1) = f(xi(t), u(t), wi(t), pi(t)), i = 1, 2, t ∈ I[0,T −1].
For the sake of brevity, we define zi(t) := (xi(t), u(t), wi(t), pi(t)), i = 1, 2, t ∈
I[0,T −1], and Zi :=

(
xi(0), pi(0), {u(t)}T −1

t=0 , {wi(t)}T −1
t=0

)
, i = 1, 2. Note again that

each Zi (involving the initial conditions xi(0) and pi(0)) uniquely defines the se-
quence {zi(t)}T −1

t=0 (involving the states xi(t) and parameters pi(t), t ∈ I[0,T −1]) for
i = 1, 2 using the dynamics in (7.73a) and in (7.73b).
The following result provides a sufficient condition for the trajectory pair (7.74) to
be persistently excited, in the sense that the PE condition characterizing the set ET

in Definition 5.2 holds.

Proposition 7.3. Let Assumptions 7.4, 7.5, 7.6, and 7.8 hold. Consider some α > 0.
There exist matrices Sp, Pp, Qp, Rp ≻ 0 and a constant ηp ∈ (0, 1) such that the
following implication holds. If a trajectory pair as in (7.74) satisfies

CT (Z1, Z2) :=
T −1∑
t=0

µT −1−tY (t, z1(t), z2(t))⊤Y (t, z1(t), z2(t)) ≻ αIo (7.75)

for some T ∈ I≥0, where Y (t, z1, z2) := C(z1, z2)Y (t) + F (z1, z2) and

Y (t+1) = Φ(z1(t), z2(t))Y (t)+E(z1(t), z2(t))+L(z1(t), z2(t))F (z1(t), z2(t)) (7.76)

for t ∈ I[0,T −1] with Y (0) = 0n×o, then the trajectory pair (7.74) also satisfies

|p1(0) − p2(0)|2Sp ≤ ηT
p |x1(0) − x2(0)|2Pp +

T −1∑
j=0

|w1(j) − w2(j)|2Qp + |y1(j) − y2(j)|2Rp .

(7.77)

The proof of Proposition 7.3 is an extension of the proof of Proposition 7.1, where
we first require uniform boundedness of the recursion in (7.76).

Lemma 7.1. Let Assumptions 7.4, 7.5, 7.6, and 7.8 hold. Then, there exists a
constant Ymax > 0 such that Y (t) in (7.76) satisfies |Y (t)| ≤ Ymax uniformly for all
possible t ∈ I≥0. Here, a particular choice is

Ymax = 1 + ϵ3

(1 − η)ϵ3 − ηϵ2
3

λmax(P )
λmin(P ) (Ē + L̄F̄ )2 (7.78)

for any value of ϵ3 ∈ (0, η−1 −1) with C̄ from Assumption 7.5, η, P, L̄ from Assump-
tion 7.6, and Ē,F̄ from Assumption 7.8.
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Proof. Consider the trajectories (7.74) with T ∈ I≥0. In the following, we will omit
the dependency of terms depending on (z1(t), z2(t)), zi(t) = (xi(t), ui(t), wi(t), pi(t)),
i = 1, 2 for brevity. Consider some constant vector v ∈ Ro with v ̸= 0 and define
ν(t) := Y (t)v ∈ Rn. By performing the recursion (7.76), we obtain

ν(t+ 1) = Y (t+ 1)v = ΦY (t)v + Ev + LFv = Φν(t) + (E + LF )v.

Applying the norm | · |P =
√

| · |2P (with P from Assumption 7.6) to both sides and
using the triangle inequality and (7.41) leads to

|ν(t+ 1)|P ≤ |Φν(t)|P + |(E + LF )v|P ≤ √
η|ν(t)|P + |(E + LF )v|P .

By squaring both sides and using the fact that for any ϵ3 > 0, (a+b)2 ≤ (1+ ϵ3)a2 +
1+ϵ3

ϵ3
b for any a, b > 0, it follows that

|ν(t+ 1)|2P ≤ (1 + ϵ3)η|ν(t)|2P + 1 + ϵ3

ϵ3
|(E + LF )v|2P . (7.79)

Now consider ϵ3 small enough such that η̃ := (1 + ϵ3)η < 1 (this requires ϵ3 ∈
(0, η−1 − 1)). Since E and F are bounded by Assumption 7.8, we have

|(E + LF )v|2P = v⊤(E + LF )⊤P (E + LF )v ≤ c1|v|2 (7.80)

uniformly for all z1, z2 ∈ Z, where

c1 := λmax(P )|E + LF |2 ≤ λmax(P )(|E| + |L||F |)2 ≤ λmax(P )(Ē + L̄F̄ )2 =: c2.

Define c̄ := 1+ϵ3
ϵ3
c2. In combination, (7.79) yields

|ν(t)|2P ≤ η̃t|ν(0)|2P + c̄
t∑

j=1
η̃j−1|v|2.

By the definition of ν, it hence follows that

v⊤Y (t)⊤PY (t)v ≤ η̃tv⊤Y (0)⊤PY (0)v +
t∑

j=1
η̃j−1c̄|v|2 ≤ c̄

1 − η̃
|v|2,

where in the latter inequality we have used that Y (0) = 0 and the geometric series.
This leads to the implication

v⊤
(
Y (t)⊤PY (t) − c̄

1 − η̃
Io

)
v ≤ 0 v ̸=0⇒ Y (t)⊤PY (t) ⪯ c̄

1 − η̃
Io,

which lets us conclude that

Y (t)⊤Y (t) ⪯ c̄

λmin(P )(1 − η̃)Io.

Hence, all eigenvalues of the symmetric positive semidefinite matrix Y (t)⊤Y (t) are
uniformly bounded for all times t ∈ I≥0 by the constant c̄(λmin(P )(1 − η̃))−1. Since
|Y (t)| =

√
λmax(Y (t)⊤Y (t)) by definition of the spectral norm, we have that

|Y (t)|2 ≤ c̄

λmin(P )(1 − η̃) = Ymax,

where the last equality follows by simple algebraic manipulations using the defini-
tions of c2 and η̃ from above and Ymax from (7.78), which concludes this proof.
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Proof of Proposition 7.3. We apply similar arguments as in the proof of Proposi-
tion 7.1, with differences resulting from the parameter dynamics (7.73b). Con-
sider the trajectory pair (7.74) and their outputs yi(t) = h(xi(t), u(t), wi(t), pi(t)),
i = 1, 2, t ∈ I[0,T −1]. Define ∆q(t) := q1(t) − q2(t) for q ∈ {x,w, p, y}, t ∈ I[0,T −1].
In the following, we will omit the dependency of terms on (z1(t), z2(t)), zi(t) =
(xi(t), u(t), wi(t), pi(t)), i = 1, 2 for the sake of brevity. Using the mean-value the-
orem, the definitions from (7.39), and the parameter dynamics (7.73b), we obtain
the incremental system

∆x(t+ 1) = A∆x(t) +B∆w(t) + E∆p(t), (7.81a)
∆p(t+ 1) = ∆p(t) +Bp∆w(t), (7.81b)

∆y(t) = C∆x(t) +D∆w(t) + F∆p(t) (7.81c)

for t ∈ I[0,T −1]. Now consider the transformed coordinates ζi(t) := xi(t) − Y (t)pi(t),
i = 1, 2, t ∈ I[0,T −1], where Y (t) is from (7.76). Define ∆ζi(t) = ζ1(t)−ζ2(t), t ∈ I[0,T ]
and note that

∆ζ(t) = ∆x(t) − Y (t)∆p(t). (7.82)

Performing the same steps that we applied to derive (7.51), we obtain

|∆ζ(t+ 1)|2P ≤ (1 + ϵ)η|∆ζ(t)|2P

+ 2(1 + ϵ)
ϵ

(
|(B + LD − Y (t+ 1)Bp)∆w(t)|2P + |L∆y(t)|2P

)
,

(7.83)

where the only difference to (7.51) is the additional term Y (t+ 1)Bp that originates
from the parameter dynamics (7.73b) applied in (7.82).
Now, consider the recursion (7.52), i.e.,

S(t+ 1) = µS(t) + Y (t, z1(t), z2(t))⊤Y (t, z1(t), z2(t)), t ∈ I[0,T −1] (7.84)

with S(0) = 0o×o, Y from (7.75), and some µ ∈ (0, 1) that will be specified below.
By Lemma 7.1 and Assumption 7.5, note that

|S(t)| ≤ µ|S(t− 1)| + |CY (t− 1) + F |2 ≤ µt|S(0)| +
t∑

j=1
µj−1(C̄Ymax + F̄ )2,

which by application of the geometric series and S(0) = 0 implies that

|S(t)| ≤ (C̄Ymax + F̄ )2

1 − µ
=: Smax (7.85)

uniformly for all t ∈ I[0,T ] (where Smax is independent of T ). For any t ∈ I[0,T −1],
consider |∆p(t + 1)|S(t+1) and note that by the parameter dynamics 7.73b and the
triangle inequality,

|∆p(t+ 1)|S(t+1) ≤ |∆p(t)|S(t+1) + |Bp∆w(t)|S(t+1).
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By squaring both sides, using the fact that for any ϵ2 > 0, (a+b)2 ≤ (1+ϵ2)a2+ 1+ϵ2
ϵ2
b2

for any a, b > 0, and employing the recursion (7.84), we obtain

|∆p(t+ 1)|2S(t+1)

≤ (1 + ϵ2)|∆p(t)|2S(t+1) + 1 + ϵ2

ϵ2
|Bp∆w(t)|2S(t+1)

= (1 + ϵ2)µ|∆p(t)|2S(t) + (1 + ϵ2)|Y (t, z1(t), z2(t))∆p(t)|2 + 1 + ϵ2

ϵ2
|Bp∆w(t)|2S(t+1).

(7.86)

Furthermore, by the definition of Y , the transformation (7.82), and the incremental
output (7.81c), it follows that

|Y (t, z1(t), z2(t))(∆p(t))|2 = |∆y(t) −D∆w(t) − C∆ζ(t)|2

≤ 3|∆y(t)|2 + 3|D∆w(t)|2 + 3 C̄2

λmin(P ) |∆ζ(t)|2P , (7.87)

where the last step followed by applying Jensen’s inequality, Assumption 7.5, and
P from Assumption 7.6.
Now consider the function W (t, ζ1, ζ2, p1, p2) := |ζ1 − ζ2|2P + γ|p1 − p2|2S(t), t ∈ I[0,T ]
for some γ > 0. We choose the constants µ, ϵ, γ introduced above such that

µ̃ := (1 + ϵ2)µ = (1 + ϵ)η + γ(1 + ϵ2)
3C̄2

λmin(P ) < 1. (7.88)

Using (7.83), (7.84), (7.87), and (7.88), we obtain that

W (t+ 1, ζ1(t+ 1), ζ2(t+ 1), p1(t+ 1), p2(t+ 1))

≤ µ̃W (t, ζ1(t), ζ2(t), p1(t), p2(t)) + γ
1 + ϵ2

ϵ2
|Bp∆w(t)|2S(t+1)

+ 2(1 + ϵ)
ϵ

|(B + LD − Y (t+ 1))∆w(t)|2P + 3γ(1 + ϵ2)|D∆w(t)|2

+ 2(1 + ϵ)
ϵ

|L∆y(t)|2P + γ(1 + ϵ2)3|∆y(t)|2

for all t ∈ I[0,T −1]. Here, we note that

|Bp∆w(t)|2S(t+1) ≤ |Bp|2Smax|∆w(t)|2

with Smax from (7.85). Similarly, due to Assumptions 7.5 and 7.6, we have that

|(B + LD − Y (t+ 1))∆w(t)|2P ≤ (B̄ + L̄D̄ + Ymax)2|P ||∆w(t)|2

with Ymax from Lemma 7.1. Hence, we can select Q,R ≻ 0 such that

|w̄|2Q ≥γ 1 + ϵ2

ϵ2
|Bpw̄|2S(t+1) + 2(1 + ϵ)

ϵ
|(B + LD − Y (t+ 1))w̄|2P + 3γ(1 + ϵ2)|Dw̄|2,

|ȳ|2R ≥2(1 + ϵ)
ϵ

|Lȳ|2P + γ(1 + ϵ2)3|ȳ|2
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for all z1, z2 ∈ Z and all w̄ ∈ Rq, ȳ ∈ Rp. Consequently, we can infer that

W (t+ 1, ζ1(t+ 1), ζ2(t+ 1), p1(t+ 1), p2(t+ 1))
≤ µ̃W (t, ζ1(t), ζ2(t), p1(t), p2(t)) + |∆w(t)|2Q + |∆y(t)|2R (7.89)

for all t ∈ I[0,T −1]. Recursive application of (7.89) yields

W (T, ζ1(T ), ζ2(T ), p1(T ), p2(T ))

≤ µ̃TW (0, ζ1(0), ζ2(0), p1(0), p2(0)) +
T∑

j=1
µ̃j−1

(
|∆w(T − j)|2Q + |∆y(T − j)|2R

)
.

(7.90)

By the definition of W , the recursion (7.84) with S(0) = 0, and the definition of CT

in (7.75), we obtain

W (T, ζ1(T ), ζ2(T ), p1(T ), p2(T )) ≥ γ∆p(T )⊤CT (Z, Z̃)∆p(T ) ≥ γα|∆p(T )|2. (7.91)

Furthermore, since Y (0) = 0 and S(0) = 0 we also have that

W (0, ζ1(0), ζ2(0), p1(0), p2(0)) = |∆x(0) − Y (0)∆p(0)|2P + γ|∆p(0)|2S(0) = |∆x(0)|2P .
(7.92)

From (7.90) and the bounds (7.91) and (7.92), it hence follows that

αγ|∆p(T )|2 ≤ µ̃T |∆x(0)|2P +
T∑

j=1
µ̃j−1

(
|∆w(T − j)|2Q + |∆y(T − j)|2R

)
.

Thus, we derived a bound on |∆p(T )|2; to infer a bound on the difference in the
initial parameters |∆p(0)|2 as required, we note that by the dynamics (7.81b) and
the triangle inequality, it holds that

∆p(T ) = ∆p(0) +
T −1∑
j=0

Bp∆w(j) ⇒ |∆p(0)| ≤ |∆p(T )| +
T −1∑
j=0

|∆w(j)|B⊤
p Bp .

In combination, we obtain

αγ|∆p(0)|2 ≤ αγ|∆p(T )| + αγ
T −j∑
j=1

|∆w(j)|B⊤
p Bp

≤ µ̃T |∆x(0)|2P +
T −1∑
j=0

|∆w(j)|2Q̄ + |∆y(j)|2R

with Q̄ = Q + αγB⊤
p Bp, which is equivalent to (7.77) with ηp = µ̃, Sp = αγIo,

Qp = Q̄, Rp = R. Noting that these choices are independent of the trajectories (7.42)
and the value of T concludes this proof.

As in Proposition 7.1, the numerical verification of (7.75) requires the knowledge
of both trajectories in (7.74), which is not the case when applied to the estimation
problem presented in Section 5.3. However, we can again derive local statements
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based on data from only one of the trajectories that are valid in a surrounding
neighborhood by defining

OT (Z) := CT (Z,Z) (7.93)

with CT from (7.75). By invoking Proposition 7.2, for the pair (Z1, Z2) defined
by the trajectories in (7.74), we know that there exists a neighborhood of Z1 such
that if O(Z1) > α′ for some α′ > 0 and Z2 is in the neighborhood of Z1, there
exists α > 0 such that C(Z1, Z2) > α. Hence, this method allows us to verify if
a given trajectory pair is (locally) PE or not, compare also Remark 7.11. Again,
note that this is of particular importance in the context of MHE for joint state
and parameter estimation (Chapter 5), as the excitation condition used in (5.80)
can thus be checked based on the estimated trajectory only, without knowing the
(unknown) true one. We conclude this section by noting that global PE statements
can be derived for the special case of linearly parameterized dynamics and linear
outputs (7.65) by suitable modifying Corollary 7.2.

7.3. Summary

In this chapter, we focused on the numerical verification of detectability and PE
properties for general nonlinear systems. These are fundamental concepts in control
and signal processing and play an important role in observer design and system
identification; however, practical tools to actually verify them are lacking.
To this end, we developed several methods to certify detectability (in terms of i-IOSS
for discrete-time systems and i-iIOSS for continuous-time systems) and check if a
given trajectory pair satisfies a PE property or not. The verification methods rely on
arguments from contraction theory involving the differential dynamics, Riemannian
geometry, and the mean-value theorem in order to reformulate the underlying and
rather abstract mathematical conditions in the form of simple LMIs. These can be
numerically solved using standard methods such as SDP in combination with LPV
embeddings, SOS relaxations, or simple gridding techniques.
Our results are suitable in the context of the MHE schemes presented and analyzed in
Chapters 3–6 to provide robustness guarantees for MHE under practical conditions.
Moreover, they generally provide useful tools to actually verify detectability and PE
of nonlinear systems in practice, where such properties are generally often assumed,
but could not be certified due to a lack of methods.





8. Conclusions

We now summarize the main results obtained within this thesis and discuss possible
topics for future work.

8.1. Summary

In this thesis, we obtained various new results in the field of nonlinear MHE the-
ory. In particular, we established robust stability and performance guarantees under
practically relevant conditions and developed MHE algorithms for real-time appli-
cations and joint state and parameter estimation problems with rigorous theoretical
guarantees.
In Chapter 2, we focused on the notion of i-IOSS as a characterization of detectabil-
ity for nonlinear systems. We discussed the classical asymptotic-gain formulation
of i-IOSS and two modern time-discounted variants, which became standard de-
tectability concepts in the context of MHE in the recent years. While these prop-
erties coincide for discrete-time systems, this is generally not the case in continuous
time, and we must carefully distinguish between them. We proposed the notion of
i-iIOSS for continuous-time systems, which essentially constitutes a time-discounted
integral variant of i-IOSS, and provided equivalent Lyapunov function characteri-
zations. Moreover, we showed that i-iIOSS is in fact necessary for the existence of
state observers that exhibit a certain robust stability property with respect to the
unknown disturbances and measurement noise, which turned out to be very desir-
able as it combines the advantages of classical ISS and iISS characteristics. Overall,
we provided a general Lyapunov framework for the robust stability analysis of state
observers in continuous time, which forms the basis for the Lyapunov-based MHE
schemes analyzed in this thesis.
In Chapter 3, we focused on robust stability guarantees of MHE for detectable
nonlinear systems under process disturbances and measurement noise. We briefly
introduced the Lyapunov-based MHE scheme from [Sch+23, Sec. III], which employs
a least squares objective under additional discounting and enjoys many beneficial
theoretical properties, provided that the cost function is selected in accordance with
a known i-IOSS Lyapunov function. Then, we presented a Lyapunov-based MHE
scheme for general nonlinear continuous-time systems. Assuming that the system
is detectable (i-iIOSS) and admits a corresponding i-iIOSS Lyapunov function, we
showed that there exists a sufficiently long estimation horizon that guarantees ro-
bust global exponential stability of the estimation error. The continuous-time MHE
scheme has the decisive advantage that the sampling times at which the underly-
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ing optimization problem is solved can be chosen arbitrarily. This allows the MHE
scheme to be tailored to the problem at hand, which can yield more accurate results
with less computational effort compared to standard equidistant sampling used in
discrete-time MHE approaches. Moreover, we showed that Lyapunov-based MHE
generally allows for significantly less conservative (i.e., smaller) estimates of the
minimum required horizon length compared to the literature. The applicability of
Lyapunov-based MHE for discrete- and continuous-time systems was illustrated us-
ing a nonlinear chemical reaction and a quadrotor model from the literature. Here,
we certified detectability by computing i-IOSS and i-iIOSS Lyapunov functions using
our methods from Section 7.1 and successfully applied the Lyapunov-based MHE
schemes. This illustrates that the combination of Lyapunov-based MHE and the
verification methods from Section 7.1 allow for guaranteed robustly stable state
estimation under practically relevant conditions, for both discrete- and continuous-
time systems.
In Chapter 4, we presented two suboptimal MHE schemes and established global
robust stability guarantees with respect to unknown process disturbances and mea-
surement noise. This is crucial in order to ensure real-time applicability of MHE
in cases where the optimization problem cannot be solved to optimality within one
fixed sampling interval. The suboptimal schemes rely on an a priori known, robustly
stable auxiliary observer, which is used to construct a suitable candidate solution
to the respective MHE problems. By imposing that any suboptimal solution to the
MHE problem achieves at most the same cost, the proposed suboptimal estima-
tors inherit the stability properties of the auxiliary observer while benefiting from
the performance of the numerical optimizers. Here, we considered two conceptually
different MHE formulations: first, a rather classical one that optimizes over tra-
jectories of the system, and second, a modified version that optimizes directly over
trajectories of the auxiliary observer. While the first one allows the user to employ a
standard least squares cost function, the second one enables better theoretical guar-
antees and can improve the convergence speed of MHE in case the auxiliary observer
is rather aggressive. In contrast to most of the related literature, the corresponding
robustness guarantees are valid independent of the chosen optimization algorithm
and the number of solver iterations performed at each time step (including zero).
The simulation examples showed that both MHE formulations are very effective, es-
pecially in the case of poor transient behavior of the auxiliary observer. Moreover,
with only a few iterations of the optimizer, we were able to significantly improve the
estimates of the auxiliary observer and achieve an overall estimation performance
close to that obtained with standard (optimal) MHE, while significantly reducing
the required computation times.
In Chapter 5, we proposed MHE schemes for joint state and parameter estima-
tion, particularly tailored for parameters that may suffer from insufficient excita-
tion. Specifically, the cost function involves an adaptive regularization term that is
adjusted according to real-time excitation information, where we rely on the exci-
tation monitoring techniques developed in Section 7.2. We considered the case of
constant and time-varying parameters and derived a bound for the state and pa-
rameter estimation error that is valid regardless of the excitation of the parameter
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and in particular also applies if the parameter is never or only rarely excited during
operation. The bound improves with respect to the initial estimates the more often
the parameter is detected to be sufficiently excited. Moreover, if the time between
two PE intervals occurred during online operation can be uniformly bounded (which
may be the case in practice for periodic operations), our result specializes to RGES,
i.e., it implies exponential convergence of the state and parameter estimation error
to a neighborhood around the origin defined by the true disturbances. The nu-
merical examples illustrated that the proposed MHE schemes in combination with
the PE monitoring techniques from Section 7.2 are able to efficiently compensate
for phases of weak excitation. For both constant and time-varying parameters, we
obtained reliable estimation results for all times, which in particular were prevented
from deteriorating arbitrarily in phases without excitation, while being accurate in
phases with sufficient excitation.
In Chapter 6, we studied the turnpike phenomenon in optimal state estimation
problems and developed novel accuracy and performance guarantees for MHE. We
showed that the solution to the (acausal) infinite-horizon optimal estimation prob-
lem involving all past and future data serves as a turnpike for finite horizon prob-
lems, which are the core of MHE and FIE. We investigated different mathematical
characterizations of this phenomenon and established sufficient conditions involving
strict dissipativity and decaying sensitivity. For linear systems and quadratic cost
functions, we showed that decaying sensitivity is naturally present under control-
lability and observability using standard arguments from optimal control theory.
From our turnpike analysis, we found that MHE problems generally exhibit both
an approaching and a leaving arc, which may in fact have a potentially strong neg-
ative impact on the overall estimation accuracy. To counteract the leaving arc, we
suggested using an artificial delay in the MHE scheme, and we showed that the
resulting performance (both averaged and non-averaged) is approximately optimal
and yields bounded dynamic regret with respect to the infinite-horizon benchmark
solution, with error terms that can be rendered arbitrarily small by an appropriate
choice of delay. We proposed a novel turnpike prior for MHE formulations with prior
weighting, effectively counteracting the approaching arc and proven to be a valid
alternative to the classical options (such as the filtering or smoothing prior) with
superior theoretical properties. In our simulations, we found that MHE with the
proposed turnpike prior performs comparably well to MHE with filtering or smooth-
ing priors, while the delay resulted in a significant improvement of the estimation
results. In particular, considering a continuously stirred tank reactor example and
a highly nonlinear quadrotor model from the literature, we observed the turnpike
phenomenon and found that a delay of one to three steps improved the overall es-
timation error by 20-25 % compared to standard MHE (without delay). For offline
estimation, the proposed delayed MHE scheme has proven to be a useful alternative
to established iterative filtering and smoothing methods, significantly outperforming
them especially in the presence of non-normally distributed noise.
In Chapter 7, we focused on the numerical verification of detectability and PE prop-
erties for general nonlinear systems. These are fundamental concepts in control and
signal processing and play an important role in observer design and system identifi-
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cation. We developed several methods to certify detectability (in terms of i-IOSS for
discrete-time systems and i-iIOSS for continuous-time systems) and check if a given
trajectory pair satisfies a certain PE property or not. The verification methods rely
on arguments from contraction theory involving the differential dynamics, Rieman-
nian geometry, and the mean-value theorem in order to reformulate the underlying
and rather abstract mathematical conditions in the form of simple LMIs. These can
be numerically solved using standard methods such as SDP in combination with
LPV embeddings, SOS relaxations, or simple gridding techniques. The proposed
verification methods are essential to provide robustness guarantees for MHE un-
der practical conditions in Chapters 3–6. However, they also represent useful tools
beyond the field of MHE to verify important properties such as detectability, incre-
mental dissipativity, and PE of nonlinear systems in practice, where such properties
are generally often assumed but could not be certified due to a lack of methods.
In summary, this thesis successfully extends the systems-theoretic understanding of
MHE and contributes to the overall goal of supporting the great success of MHE in
practical applications with appropriate theory. In particular, we were finally able
to provide robustness guarantees for MHE under practically relevant conditions,
mainly by combining Lyapunov-based MHE schemes with our numerical methods
to verify the required detectability condition. Furthermore, we established global
robustness properties for real-time capable MHE schemes that allow for a com-
pletely free choice of the optimization algorithm and the corresponding termination
criterion. In addition, we developed MHE schemes for joint state and parameter
estimation, particularly tailored to applications in which weak excitation occurs fre-
quently and unpredictably. Finally, we established a theoretical link between MHE
and the acausal infinite-horizon solution involving all past and future data using
turnpike arguments, leading to a new perspective on MHE and ultimately to novel
performance estimates and regret guarantees.

8.2. Outlook

The results obtained in this thesis considerably extend the theory of nonlinear MHE,
while at the same time opening the field for many further investigations. In the
following, we outline some interesting areas for possible future work.
In Chapter 2, we discussed three technically different characterizations of i-IOSS,
including the original asymptotic-gain formulation and time-discounted (integral or
max-based) variants. While these could be shown to be completely equivalent in
the context of discrete-time systems, their formal relations are far less clear for
continuous-time systems. Notice that this even applies to the (non-discounted)
stability notions without outputs, i.e., i-ISS and1 (non-discounted) i-iISS. An in-
teresting theory-oriented topic for future work is therefore proving (or disproving)
some open relations between i-iI(O)SS and i-I(O)SS (without discounting), e.g., by

1The work [Ang09] establishes the implication i-iISS ⇒ i-ISS; however, [Ang09, Thm. 3] relies
on the converse Lyapunov result [Ang09, Thm. 1], the proof of which, however, seems to be
erroneous (this applies to the first inequality above (23)) and yet requires a suitable fix.
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constructing suitable counterexamples. Another interesting future direction con-
cerns the converse Lyapunov theorem presented in Chapter 2 (Theorem 2.1), where
the fact that the Lyapunov function is necessarily continuous could only be shown
for the weaker notion of i-iIOSS with nominal outputs (Definition 2.2). However,
in the context of MHE, we are actually interested in i-iIOSS with disturbed out-
puts (Definition 2.1), as this allows to develop suitable estimation schemes with
strong robustness guarantees for systems where the measurement noise enters the
output equation nonlinearly. So far, however, it is unknown if considering a con-
tinuous i-iIOSS Lyapunov function as detectability property (Assumption 3.1) is
more restrictive than i-iIOSS with disturbed outputs (Definition 2.1), unless we re-
strict ourselves to additive measurement noise, see Proposition 2.2. Intuitively, these
characterizations should be equivalent, but a formal proof is yet missing.
In Chapter 3, we focused on Lyapunov-based MHE frameworks for general detectable
nonlinear systems. These facilitate establishing RGES of MHE, that is, a strong and
desirable robust stability property of the estimation error, see Definition 3.1 for de-
tails. In some applications, however, the provided robustness guarantees might be
in fact stronger than required. Here, it seems interesting to investigate conditions
under which MHE exhibits only weaker forms of robust stability, for example in
a practical sense or with asymptotic (rather than exponential) convergence rates.
This might further increase the practical relevance of nonlinear MHE theory, espe-
cially in applications where the system is not uniformly exponentially detectable.
Some first steps in this direction are taken in, e.g., [MKZ23b] in the context of
MHE under parametric uncertainties, or in [KM23] by establishing RGAS of MHE
through a nonlinear contraction. Another interesting future direction is the exten-
sion of Lyapunov-based MHE to the case of standard least squares cost functions,
particularly without discounting. This is covered in, e.g., [AR21; Mül17], but the
results are either conservative or require restrictive and impractical conditions on
the horizon length, compare the discussion in Section 3.3. As the lack of discounting
prevents applying the theory from Chapter 3, a new proof technique would need to
be derived. Here, a promising approach is to address this problem using our turnpike
results from Chapter 6 and trying to infer robust stability of MHE by exploiting the
turnpike property with respect to the infinite-horizon solution.
Regarding the suboptimal MHE schemes proposed in Chapter 4, the established
estimation error bounds are quite conservative, in the sense that they cannot be
better than those provided by the auxiliary observer. This is a natural consequence
of our approach, since we aim to preserve stability of MHE even in the case where
no optimization is performed (i.e., without applying any iteration of the optimiza-
tion algorithm). This has the particular advantage that our results are completely
independent of the optimization algorithm; however, the downside is that (i) the sta-
bility properties of the auxiliary observer cannot be improved and (ii) the guarantees
for suboptimal MHE do not capture the interplay between the number of solver it-
erations performed and the accuracy of the estimation results. Addressing these
two problems is an interesting topic for future work; especially the second one is of
interest for practical applications, as it would provide an estimate on the trade-off
between estimation accuracy and computational requirements which would be useful
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in the MHE design. This could be achieved by combining the guarantees developed
in Chapter 4 with a specific optimization algorithm (or a class of algorithms), such as
gradient or Newton methods, compare, e.g., [WVD14; AG17; GGE22; Ale25]. The
key challenge here is that the results should not lose their global character, which is
usually the case in the convergence analysis of such optimization algorithms.
In Chapter 5, we proposed MHE schemes specifically tailored to joint state and
parameter estimation, despite potentially weak or missing excitation. Here, the key
ingredient was using an adaptive regularization term in the cost function, incor-
porating online information about the current excitation. However, the excitation-
dependent update rules proposed in (5.17) and (5.80) for the prior parameter esti-
mate involve a binary decision, relying on a PE condition that considers the whole
parameter vector. In particular, only if the whole parameter vector is sufficiently
excited, the prior estimate is updated; in case at least one single element is not suffi-
ciently excited, however, the PE condition cannot be satisfied and the prior estimate
is not updated. An interesting (and practically relevant) topic for future work is
therefore the investigation of directional excitation properties, considering the case
where some parameters may be sufficiently excited for estimation and others not.
To this end, a promising approach might be to combine the developed MHE scheme
with directional PE metrics as used in, e.g., [SJ11; BRD22], in order to extend the
MHE framework to parameter-individual excitation monitoring and regularization.
Our findings from Chapter 6 represent a new approach and perspective in the MHE
literature; therefore, many interesting topics for future work arise. The first one
concerns the turnpike property from Definition 6.1, where we essentially require an
explicit time-dependent bound on the difference between optimal solutions and the
turnpike. Here, a thorough turnpike analysis for nonlinear systems and general cost
functions is yet to be done, particularly focusing on sufficient conditions that are
of global nature. An important question here is whether turnpike behavior in the
sense of the Definition 6.1 can be established using a global dissipativity concept.
To this end, one could first investigate how the framework and arguments used
[Dam+14] can be extended to the more general case of a time-varying turnpike.
Another interesting problem is the extension of the developed theory to the case of
discounted cost functions, which are in fact crucial in our robust stability analysis in
Chapter 3. This, however, requires a careful investigation of a suitable benchmark
solution and corresponding turnpike properties. Here, some insights obtained in the
field of discounted optimal control could be useful, e.g., [Gai+18; GSS15; Pos+17].
This might also require investigating and extending discounted dissipativity concepts
that are proposed in [Grü+21; ZG22].
Our performance results presented in Chapter 6 are particularly relevant for ap-
plications where a small delay in the online estimation can be tolerated, which is
especially the case for system monitoring, fault detection or parameter estimation.
However, if the estimates are to be used for state feedback control, the picture is not
as clear. Indeed, the additional delay in the closed loop requires careful design of
the control algorithm to ensure its stability. Hence, an interesting future direction is
the investigation of suitable controllers, focusing on the trade-off between improved
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estimates and a more involved control technique. Here, we note that improved es-
timates may be particularly beneficial for robust output feedback tube-based MPC
approaches, as such designs are often overly conservative and result in a small re-
gion of attraction, compare, for example, [GK07; LSG08; May+09; DA21]. In this
context, it would be interesting to investigate whether the proposed δMHE scheme
can be used to reduce some conservatism in the overall scheme, exploiting the fact
that the obtained state estimates are close to the turnpike.
In conclusion, the results presented in this thesis open up various research directions,
ranging from a further theoretical analysis of suitable detectability notions, robust
stability properties, and turnpike behavior of MHE problems, to further develop-
ment of the proposed MHE schemes for real-time applications and joint state and
parameter estimation problems.
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