
Abstract

Regardless of the field, measurements are essential for validating theories and

making well-founded decisions. A criterion for the validity and comparability of

measured values is their uncertainty. The ”Guide to the Expression of Uncertainty

in Measurement” (GUM) provides a standardized framework for determining and

interpreting measurement uncertainty. Still, in room acoustical measurements,

the application of these rules is not yet widespread. Firstly, this is due to the

fact that well established 2-CH-FFT correlation techniques rely on a complex

principle, which is not covered by the classical guide. In addition, the effect

of input variables on an individual measurement can only be determined after

considerable effort. An example are fluctuations of room acoustical quantities over

small distances between measurement locations in concert halls. This variation of

the sound field by position is sometimes considerable and can only be predicted

in relatively simple boundary value problems. This raises the question of the

validity and interpretability of room acoustical measurements.

The goal of this thesis is to provide a GUM-compliant discussion of uncertain-

ties in measuring room acoustical single-number quantities. This starts with a

structured search of variables that potentially influence the measurement of room

impulse responses. In a second step, this uncertainty is propagated through the

algorithm that determines room acoustical single-number quantities.

Further emphasis is placed on the investigation of spatial fluctuations of the

sound field in auditoria. The influence of an uncertain measurement position on

the overall measurement uncertainty is discussed. To reach general conclusions,

the relation between changes in the measurement location and the corresponding

changes in measured room acoustical quantities is investigated empirically in

extensive measurement series. To this end, a measurement apparatus was designed

that allows automatic, high-resolution sampling of sound fields over large areas.

The collected data creates the foundation to apply the principle of uncertainty

propagation using a Monte Carlo method.



II

This study shows how precisely a measurement position must be defined to

ensure a given uncertainty of room acoustical single-number quantities. The

presented methods form a foundation that can be flexibly extended in future

investigations to include additional influences on the measurement uncertainty.



Kurzfassung

Unabhängig vom Fachgebiet sind Messungen essentiell für die Validierung von

Theorien und für das Treffen fundierter Entscheidungen. Merkmal für die Aussage-

kraft und Vergleichbarkeit von Messwerten ist unter Anderem deren Unsicherheit.

Für die Bestimmung und die Interpretation der Messunsicherheit stellt der Guide

to the Expression of Uncertainty in Measurement (GUM) einen standardisierten

Rahmen bereit. Bei raumakustischen Messungen ist die Anwendung dieses Regel-

werks bisher noch nicht grundsätzlich verbreitet. Das liegt einerseits daran, dass

mit der weit verbreiteten Korrelationsmesstechnik ein komplexes Messprinzip

verwendet wird, das im klassischen Leitfaden nicht behandelt wird. Außerdem

ist die Wirkung von Eingangsgrößen, die eine Messung beeinflussen können, nur

mit größtem Aufwand im Einzelfall bestimmbar. Beispiel dafür sind Fluktuatio-

nen raumakustischer Kenngrößen über kleinste Abstände zwischen Messorten in

Konzertsälen. Diese zum Teil beachtliche Änderung des Schallfeldes über den Ort

wirft die Frage nach der Aussagekraft und Interpretierbarkeit raumakustischer

Messungen auf.

Ziel dieser Arbeit ist eine GUM konforme Diskussion der Unsicherheit beim

Messen raumakustischer Einzahlkennwerte. Begonnen wird dabei mit einer struk-

turierten Suche der Größen, die die Messung von Raumimpulsantworten beein-

flussen könnten. In einem zweiten Schritt wird diese Unsicherheit durch den

Algorithmus zur Bestimmung raumakustischer Einzahlkennwerte propagiert.

Ein weiterer Schwerpunkt wird auf die Untersuchung von räumlichen Änder-

ungen des Schallfeldes in Auditorien gelegt. Es wird der Einfluss eines unsicher

bestimmten Messorts auf die Messunsicherheit diskutiert. Um möglichst allge-

meingültige Aussagen treffen zu können wird der Zusammenhang zwischen einer

Änderung des Messortes und der korrespondierenden Änderung raumakustischer

Kenngrößen in umfangreichen Messreihen empirisch untersucht. Dazu wurde ein

Messapparat gebaut mit dem Schallfelder hochauflösend und vollautomatisch

über große Flächen abgetastet werden können. Die so gesammelten Daten bilden

die Grundlage für die Berechnung der Unsicherheitsfortpflanzung mit einer Monte

Carlo Methode.



IV

Die Ergebnisse dieser Untersuchung zeigen, wie genau ein Messort bei raumaku-

stischen Messungen definiert werden muss, um eine zuvor festgelegte Unsicherheit

raumakustischer Einzahlkennwerte zu gewährleisten. Die vorgestellten Methoden

bilden eine Grundlage, die flexibel erweitert werden kann, um weitere Einflüsse

auf die Messunsicherheit in zukünftigen Untersuchungen zu berücksichtigen.
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Introduction

In architecture, concert halls, lecture rooms or open plan offices are designed for

different types of communication depending on their specific intended uses. In

rooms for speech, it is important that the speaker’s loudness is sufficient, but also

that individual syllables are clearly intelligible. For music, there are additional

aspects such as spatial sound or spectral balance that need to be considered. In

some environment, such as offices, distracting communication is unwanted and

should be minimized. The acoustician supports the architect in the design to

make sure critical limits for good communication are safely met and the room is

acoustically suitable for its purpose.

Acoustics is an interdisciplinary field and employs tools and methods from

a wide range of other specialized areas. In architectural acoustics, the impulse

response has proven to be a very useful concept from system theory. The impulse

response, which describes the transmission of information from a source to a

receiver also holds in auditorium acoustics since the room in which the sound

source and the listener are located can be understood as a transmission channel.

The room’s response to an impulse is the direct sound that travels from the

source to the listener, the sound reflections from the surfaces and the lingering

reverberation. Since there is a physical relation between the room’s geometry

and the sound transmission, it is intuitively evident why the impulse response

is so useful for the acoustic design of auditoria. Experts can interpret impulse

responses and easily recognize how syllables of a speaker are supported by early

reflections or see how a long reverberation blurs successive syllables in time and

thus impairs communication.

Room impulse responses can be measured with special equipment and con-

tribute to the acoustic planning process by providing the data to place future

design decisions on solid ground and quantify the effectiveness of previous design

decisions. In general, measurements are of core importance in science and prac-

tice when it comes to proving theories or making well-founded decisions. The

suitability of measurements as the basis for a valid argument depends a lot on

the data’s associated uncertainties. Modern measurement methods (ISO 18233,
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2006) to measure transfer functions and their associated impulse responses (IR)

using maximum length sequences or swept sine signals are common tools in all

areas of acoustics (Müller & Massarani, 2001). In architectural acoustics, room

impulse responses are regularly analyzed to determine single-number quantities

that serve as predictors for sound perception (see Section 2.1.2). Clarity C80, for

example, scales the perceived distinctness of a sound in time from highly detailed

(≈ 7 dB) to blurred (≈ −5 dB). Provided that the measured environment fea-

tures the properties of linear time invariant (LTI) systems and that a sufficient

signal-to-noise ratio is achieved, acoustical measurements of impulse responses

and room acoustic quantities are usually considered to be rather accurate.

This perspective was briefly challenged in a reflex reaction to findings of de

Vries, Hulsebos, and Baan (2001). Under quasi-repeatability conditions at Con-

certgebouw Amsterdam, RIRs were measured every 5 cm along a line following

a row of seating. The data de Vries and his team collected shows how room

acoustic single number quantities fluctuate over the surveyed distance; Figure 1.1

illustrates this for C80 (ISO 3382-1, 2009). In facetious discussions, auditoria

were compared with random number generators and the question of explanatory

power in room acoustics measurements was raised.

Figure 1.1: Spatial distribution of clarity C80 at the 1 kHz octave band along a

line measured at a concert hall.

Of course, this fabricated perspective does not appreciate the deterministic

character of sound propagation adequately, but the reference to a reproduction

problem in measurements is well-founded: If room acoustic quantities change

over such small distances, how can measurements be reproduced at another time?

How can the acoustic effectiveness of a modification to a building be verified

when the expected acoustic change is obscured by strong fluctuations?

At first glance it may seem that de Vries et al. (2001) merely confirm findings
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from earlier investigations that were conducted in the advent of the ISO 3382

(1975) revision (e.g., J. S. Bradley and Halliwell (1988); Hidaka, Beranek, and

Okano (1995); Pelorson, Vian, and Polack (1992)). After all, these studies also

discuss strong variations in room acoustic parameters with relatively small spatial

displacements of sources or receivers. The key difference is in the way the collected

data was analyzed and interpreted. Prior to de Vries, the determined spread in

room acoustic parameters was discussed statistically, such that an adequately

large sample size would be sufficient to correctly determine the variance in a

statistical population. Consequently, these findings lead to the requirement to

measure at numerous positions distributed throughout the auditorium and, hence,

provide a sufficiently large sample size to calculate average values (ISO 3382,

1997).

But with growing experience in using the revised standard it soon became

more and more evident that the underlying cause-and-effect chain was not fully

factored in: J. S. Bradley (1994) demonstrated that calculating hall-spanning

parameter averages comes with the potential to flatten out characteristic pat-

terns. This may lead to a point where auditoria, fundamentally different in shape,

are no longer distinguishable in their summary statistics. Today, there is a com-

mon understanding that averaging over all measurement positions to gain a hall

mean value seems (except for the reverberation time) generally unhelpful (Barron,

2005; J. S. Bradley, 2005). This interpretation is justified within the large-scale

dimensions of an auditorium, but it does not recognize the parameter variations

encountered within smaller distances. Follow-up investigations by Nielsen, Hal-

stead, and Marshall (1998), Sekiguchi and Hanyu (1998) and Okano, Beranek,

and Hidaka (1998) indicate that the phenomenon continued to be a target of

interest.

In this course of development the initially quoted study by de Vries et al. (2001)

marks an important milestone as it provides high-resolution data that shows

how the acoustic quantities fluctuate over a wide range of distances, starting

from a few cm to the dimensions of a concert hall. This can be interpreted

as metrological evidence towards an influence factor of measurement position

that seemed ”downgraded” by averaging over a number of locations. Taking the

sampling position as a relevant input quantity it becomes possible to refine the

statistical discussion and investigate how this contribution influences the result of

acoustical measurements. This approach can create a context for how uncertain

room acoustics measurements are and identify the subtleties worth interpreting.

The standardized tools for this discussion are provided by the ”Guide to the

expression of uncertainty in measurement” (GUM, ISO Guide 98-3 (2008)) that

places the original principles of Gaussian error propagation on a wider foundation.

In the first step a relationship needs to be established that quantifies how a
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change in measurement position yields a change in the measured result. This

marks an advance to the previous statistical discussion as the sampling position

is recognized as an influence quantity. It also moves the discussion away from

insulated individual cases to a general discussion of a broad spectrum of sound

fields and thus helps to assess how significant the ”validity” problem generally is.

In light of the raised question of reproducibility in room acoustic measurements,

the measurement function marks the foundation to investigate a derived question

of practical relevance: How precisely need measurement positions (source and

receiver) be defined?

1.1 Defining the scope of this work

Against this background, it is important to discuss the uncertainty of room

acoustic measurements. In preparation to determine the measurement model

(ISO Guide 98-3, 2008, 4.1.1) empirically, the following questions must be dis-

cussed.

� What is the uncertainty of room acoustic impulse response measurements?

� What is the uncertainty of room acoustic ISO 3382-1 (2009) quantities?

In preparing the measurement model this question needs to be answered:

� How do room acoustic quantities change when the measurement position

is changed by a given distance?

Based on the answer to the previous question, this problem of practical relevance

should be addressed:

� How accurately need measurement positions be defined?
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Fundamentals and previous work

Discussing these research questions requires a set of tools that will be briefly

outlined in this chapter. An initial focus is placed on the theoretical groundwork,

as these basics identify the driving forces and the relevant variables; in the

next step the measurement uncertainty will be of interest. In this regard it is

reasonable to first examine the status quo in room acoustical measurements and

then gradually traverse to the framework that permits a uniform discussion of

uncertainties in measurements.

2.1 Theoretical principles behind spatial fluctuations

2.1.1 Amplitude distribution due to changes in position

Initial work on spatial fluctuations of the sound field in rooms can be traced

back to Kuttruff and Thiele (1954) and Kuttruff (1954). While this work was

originally focused on the frequency dependency of the sound pressure in rooms,

as part of the investigations that led to what is now known as the ”Schroeder

Frequency” (Schröder, 1954), the initial empirical study by Kuttruff and Thiele

(1954) also discussed the the sound pressure’s spatial dependency.

The starting point is the sound field in a rectangular room with the dimensions

Lx, Ly, Lz and rigid surfaces. At characteristic eigenfrequencies ωi for ∀n ∈ N0

(here Equation 2.1.1, from Kuttruff (2000), Eq. 3.15) the cartesian components of

the respective wave vector ki meet the scenario’s boundary conditions (particle

velocity vi = 0 at the room’s surfaces) so that the system can oscillate.

ωi = cπ

√(
nx,i
Lx

)2

+

(
ny,i
Ly

)2

+

(
nz,i
Lz

)2

= cknxnynz (2.1.1)

At each of the system’s ωi’s, standing waves develop. For a single mode the

sound pressure at a position rr = (xr, yr, zr)
T can be determined through Equa-

tion 2.1.2 (Kuttruff, 2000, Eq. 3.16).
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pi(r) = cos

(
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Lx
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cos

(
ny,iπyr

Ly

)
cos

(
nz,iπzr

Lz

)
(2.1.2)

Based on the principle of reciprocity (Morse & Ingard, 1968, p.134) it can be

understood that this relation is valid for the source and the receiver alike. The

spatial cosine relationship includes the characteristic nodal points for a standing

wave at a given frequency when the cosine’s argument is (2n+ 1)π/2. At these

nodes the sound pressure is naturally zero. Reciprocally, at the same positions

the sound field cannot be excited at that frequency. The full relationship is shown

in Equation 2.1.3 (Kuttruff, 2000, Eq. 3.10) with the numerator featuring the

mathematical representation of the standing wave excited and sampled at the

positions rs and rr. This term, thus, shows a dependency on the location and is

hence responsible for the spatial fluctuation of the sound field.

p(ω, rr) = jQc2ωρ0

∑
i

pi(rs)pi(rr)

(ω2 − ω2
i − 2jδiωi − δ2

i )Ki
(2.1.3)

Obviously, a realistic system requires some damping to balance the source’s

energy influx and so become stable. This is recognized in the denominator where

the ideal dirac-delta-like eigenfrequencies are expanded through the damping

constant δi to Cauchy-Lorentz functions with characteristic quality factors.

The factors in front of the sum in Equation 2.1.3 recognize the physical proper-

ties of the point source. The volume velocity Q includes the harmonic oscillation

ejωt. Ki is a normalization constant for the standing waves (Kuttruff, 2000, Eq.

3.3),

Ki =

∫∫∫
V

p2
i (r)dV . (2.1.4)

The sigma sign in Equation 2.1.3 indicates that at a given position rs and rr
more than one mode is excited and so the emerging sound pressure level is a result

of a sum over i eigenfrequencies. Schröder (1954) argues that when the number

of eigenmodes is sufficiently large the Lindeberg-Lévy central limit theorem will

take effect and the summary distribution of the real and imaginary parts of the

sound pressure will become normally distributed. From there it is only the small

step of taking the absolute value of the complex sound pressure to arrive at

the Rayleigh distributed (linear) sound pressure amplitude p with a probability

density function fp given in Equation 2.1.5 (Johnson, Kotz, & Balakrishnan,

1994; Rayleigh, 1880). σ2
p refers to the variance of the sound pressure’s real or

imaginary parts Re(p), Im(p).
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fp(p) =
p

σ2
p
e
− p2

2σ2p (2.1.5)

The probability density function of the sound pressure level Lp can be deter-

mined to be

fLp =
ln(10)

2

p2
010Lp/10

σ2
p

e
− p

2
010

Lp/10

2σ2p (2.1.6)

by using the transformation theorem for probability densities (Johnson et al.,

1994, pp. 14-15, Eq. 12.32).

Having considered the central limit theorem and also looking at Equation 2.1.6

can suggest that the resulting SPL is due to a random process over frequency.

This perception, however, misses to appreciate Kuttruff’s (2000) explanations

that recognize the sound field in a room is the result of a deterministic process. As

such, once the energy equilibrium is reached, the sound pressure level is stationary

and could be determined analytically if all the boundary conditions were known

with the required accuracy.

These properties of the sound field can be shown in measurements as in Fig-

ure 2.1. At low frequencies, below the ”Schroeder Frequency”, the sound pressure

at a given position is defined by few, individual, sparsely overlapping modes (see

Figure 2.1e). At much higher frequencies Figure 2.1a shows how the modes over-

lap and the characteristic Cauchy-Lorentz functions cannot be identified anymore.

The corresponding histogram in Figure 2.1b is a graphical representation of the

logarithmic Rayleigh distribution in Equation 2.1.6.

A change in location leads to a change in the contributing resonances according

to the cosine terms in the numerator of Equation 2.1.3. For the central limit

theorem to take effect, independent samples of contributing modes at the different

positions are required. This condition is met as trigonometric functions, oscillating

with different integer multiples of a fundamental periodicity, are orthogonal to

each other (Bronstein, Semendyayev, Musiol, & Mühlig, 2015, 5.3.6.5-2). This

holds for arbitrary geometries since the solutions to Dirichlet and Neumann

boundary value problems are always orthogonal (Bronstein et al., 2015, 9.1.3.2-

4). As a result, it follows that the resonances/standing waves contributing to

the sound pressure at two distant positions are uncorrelated to each other and,

hence, are independent samples from the same Rayleigh distribution.

Of course, neighboring positions - ∆r apart - are correlated to each other, due

to continuously defined standing waves pi(r). A small change in position will

not necessarily lead to a sufficient exchange of the contributing resonances and

hence the sound pressure will not immediately show the postulated Rayleigh


