Contents

Symbols and abbreviations					
Zu	Zusammenfassung				
Abstract			21		
1.	Intro 1.1. 1.2. 1.3.	oduction Engine concepts and specific challenges for exhaust purification Heat-integrated exhaust purification	25 26 27 30		
2.	Sim	ulation models	31		
	2.1.	1D-multiphase simulation models	31 31 38		
	2.2.	Simplified mathematical models for stationary analysis	38 38 38		
3.	Stati	ionary simulations	53		
	3.1.3.2.3.3.	Parameter continuation and stability analysis in DIANA	54 55 55 57 64 65		
	3.4.	 3.3.1. Standard ceramic honeycomb	67 69 72		
4		• • 1.0	=-		
4.	Dyn 4.1.	amic simulationsTransient behavior of partially coated heat exchanger4.1.1.Heating in countercurrent operating mode	73 74 74		

		4.1.2. Heating with flap/bypass system	76
	4.2.	Heating strategies for operation under drive cycle conditions	82
		4.2.1. Feed conditions for drive cycle simulations	82
		4.2.2. Geometric properties of full-scale systems	82
		4.2.3. Bypass/flap system, no auxiliary heating	84
		4.2.4. Bypass/flap system with electric auxiliary heating	89
	4.3.	Sequential system	93
		4.3.1. Geometric properties of full-scale sequential prototype	94
		4.3.2. Comparative study on NEDC performance	96
	4.4.	Conclusions	99
5.	Read	ctor prototypes and experimental evaluation	103
	5.1.	Folded sheet prototype	104
		5.1.1. Reactor layout and dimensions	104
		5.1.2. Stationary experimental evaluation	106
	5.2.	Brazed prototype	113
		5.2.1. Reactor layout and dimensions	113
		5.2.2. Stationary experimental evaluation	115
		5.2.3. Comparison of heat exchanger performance	117
		5.2.4. Stationary stoichiometric conditions	117
	5.3.	Sequential system - experimental evaluation	122
		5.3.1. Reactor layout and dimensions	123
		5.3.2. Transient cold start experiments	127
		5.3.3. Stationary experiments	131
	5.4.	Conclusions	133
6.	Dire	ections for future work	135
Bi	bliog	raphy	141
A.	Expe	erimental Facilities	149
	A.1.	Test rigs for experimental evaluation of heat-exchanger prototypes	149
		A.1.1. Experimental setup for stationary, fuel-lean conditions	149
		A.1.2. Experimental setup for stationary, stoichiometric conditions	150
		A.1.3. Experimental setup for transient, stoichiometric conditions	152
	A.2.	Exhaust gas generator	153
B.	Deri	vation of quasihomogeneous model equations	157
	B.1.	Catalytically coated, countercurrent reactor	157
	B.2.	Standard ceramic monolith	163

C.	Approximation of light-off temperatures	167
	C.1. Ignition time	168
	C.2. Estimation of ignition temperatures in case of multiple reactions	169
D.	Geometric and thermophysical properties of simulation models	171
	D.1. Geometric properties of different reactor prototypes	171
	D.1.1. Folded-sheet prototype	171
	D.1.2. Brazed prototype	174
	D.1.3. Ceramic monolith	176
	D.2. Properties of gas phases and solid materials	177
	D.2.1. Gas density	177
	D.2.2. Heat capacity and enthalpy	177
	D.2.3. Viscosity	178
	D.2.4. Heat conductivity	179
	D.2.5. Diffusion coefficients	180
	D.2.6. Properties of reactor materials	181
	D.3. Transport parameters	181
	D.3.1. Axial dispersion of heat and mass	181
	D.3.2. Coefficients for heat and mass transfer	181