Inhalt

K	urzfas	sung		IV
Α	bstrac	t		ν
D	anksa	gung		V
1	Ein	leitu	ng	1
	1.1	Mo	tivation und Einführung in das Thema	1
	1.2	Zie	le der Arbeit	3
	1.3	An	forderungen an die Arbeit	4
	1.4	Str	uktur der Arbeit	4
2	Ein	ordn	ung in den Stand der Technik	7
	2.1	Ent	wicklungsprozess für Gussbauteile	7
	2.2	Str	ukturoptimierung	8
	2.2	.1	Ablauf von Strukturoptimierungen und mathematische Definition	g
	2.2	.2	Klassifizierung von Strukturoptimierungen	10
	2.2	.3	Lösungsverfahren für Strukturoptimierungen	13
	2.2	.4	Topologieoptimierung	14
	2.3	Gie	ßprozesse für Fahrwerkskomponenten	23
	2.3	.1	Kokillengießverfahren	2 3
	2.3	.2	Herstellprozess	25
	2.3	.3	Gussfehler und resultierende Anforderungen des Gießverfahrens	25
	2.3	.4	Konstruktive Maßnahmen zur Verbesserung der Gießbarkeit	28
	2.3	.5	Gießprozesssimulation	32
	2.4	Str	ukturoptimierungen mit gießtechnischen Restriktionen	34
	2.4	.1	Gliederungssystematik für gießtechnische Strukturoptimierungen	34
	2.4	.2	Übersicht über die bisherigen Optimierungsansätze	35
	2.4	3	Geometrische gießtechnische Regeln	36

	2.4.4	Strukturoptimierungen mit Erstarrungssimulation	38
	2.4.5	Strukturoptimierungen mit Formfüllsimulationen	39
	2.4.6	Multidisziplinäre Strukturoptimierungen für Gussbauteile	39
	2.5 Ein	ordnung der eigenen Arbeit	41
3	Grundla	gen der in dieser Arbeit verwendeten Verfahren	43
	3.1 Top	oologieoptimierung auf Basis von Heuristiken	43
	3.1.1	Heuristiken als Grundlage der Topologieoptimierung	43
	3.1.2	Verwendete Konzepte in der Topologieoptimierung	44
	3.1.3	Allgemeine Funktionsweise der Topologieoptimierung	47
	3.1.4	Fazit der Grundlagen der Topologieoptimierung mit LEOPARD	49
	3.2 Nu	merische Simulation des Herstellprozesses mittels CFD	49
	3.2.1	Erhaltungsgleichungen	50
	3.2.2	Mehrphasenmodelle	51
	3.2.3	Mittelung der Strömung für Phasenübergänge und Mehrfluidströmungen	53
	3.2.4	Modellierung des Dendritenarmabstands	60
	3.2.5	Veränderliche Fluideigenschaften	61
	3.2.6	Modellierung turbulenten Strömungsverhaltens	63
	3.2.7	Numerische Umsetzung	67
	3.2.8	Vorhandene Grundlagen in OpenFOAM	74
	3.2.9	Fazit der Grundlagen zur Strömungssimulation	76
4	Entwick	lung einer eigenen Gießsimulation	79
	4.1 Zie	le und Anforderungen an die Gießsimulation	79
	4.2 Ers	tellung eines Gesamtmodells zur Gießprozesssimulation	80
	4.2.1	Modellierung der Phasen	80
	4.2.2	Ablauf und Simulation des Prozesses	82
	4.2.3	Modell der Formfüllung und Erstarrung	84
	/ 3 Va	ralaich der eigenen Gießsimulation mit kommerzieller Software	01

	4.3	.1	Vergleich eines einfachen Modells	91
	4.3	.2	Vergleich Radträger	96
	4.4	Fazi	t der eigenen Gießsimulation	.103
5	Ein	bindu	ung von Herstellrestriktionen in die Topologieoptimierung	.105
	5.1	Mö	glichkeiten zur Umsetzung heuristischer Fertigungsrestriktionen	.105
	5.2	Kon	zept zur Umsetzung von Fertigungsrestriktionen	.110
	5.3	Opt	imierungsablauf mit Integration der eigenen Gießsimulation	.111
	5.3	.1	Modellaufbau und automatischer Prozess	.111
	5.3	.2	Ablauf der gussgerechten Optimierung	.114
	5.3	.3	Ermittlung der relevanten Herstellanforderungen	.116
	5.4	Um	setzung der geometrischen Regeln für das Gießen	.118
	5.4	.1	Entformungswinkel	.120
	5.4	.2	Minimale Taschengrößen	.122
	5.4	.3	Ebene Formteilung	.124
	5.4	.4	Minimale Lochgrößen	.126
	5.4	.5	Minimale Wandstärken	.128
	5.4	.6	Sicherstellung der Entlüftung	.129
	5.4	.7	Glättung der Oberfläche	.130
	5.4	.8	Weitere Heuristiken zur Bauteilanpassung	.134
	5.4	.9	Fazit der geometriebasierten Regeln	.135
	5.5	Um	setzung der simulationsbasierten Regeln	.135
	5.5	.1	Vermeidung von Kaltlauf	.136
	5.5	.2	Reduzierung von Turbulenzen und Verwirbelungen	.138
	5.5	.3	Vermeidung erstarrungsbedingter Defekte	.143
	5.5	.4	Fazit der simulationsbasierten Regeln	.147
	5.6	Erw	eiterungen der Methode und Integration in den Entwicklungsprozess	.147
	5.6	.1	Anpassung des Gießprozesses	.148
	5.6	2	Möglichkeiten zum Übertragen auf andere Guss- und Fertigungsverfahren	152

	5.7	Fazit der Einbindung von Herstellrestriktionen in die Topologieoptimierung	156
6	An	wendung der gussgerechten Topologieoptimierung	157
	6.1	Auswirkungen von grundsätzlichen Fertigungsrestriktionen	157
	6.2	Optimierung eines Radträger	163
	6.3	Optimierung eines Schwenklagers mit automatischer Speisergenerierung	170
	6.4	Einbindung der Topologieoptimierung in den Entwicklungsablauf	178
7	Zus	sammenfassung und Ausblick	183
	7.1	Zusammenfassung	183
	7.2	Ausblick	185
8	Lite	eraturangaben	187
9	Ab	kürzungen und Formelzeichen	211
1() <i>A</i>	Anhang	219