TABLE OF CONTENTS

1	Intr	oduction	1				
2	Hyperbolic conservation laws						
	2.1	General form and examples	$\overline{7}$				
	2.2	Classical solutions	10				
	2.3	Breakdown of classical solutions	11				
	2.4	Weak solutions	13				
	2.5	The Riemann problem	17				
	2.6	The role of viscosity	18				
	2.7	Entropy solutions	20				
	2.8	Some results for scalar conservation laws	22				
3	Nur	nerical preliminaries	27				
0	3.1	Approximation and interpolation	- . 27				
	0.1	3.1.1 Approximation in normed linear spaces	21				
		3.1.2 Approximation in inner product spaces	20				
		3.1.2 Approximation in finite product spaces	20				
		3.1.4 General interpolation and the Mairhuber-Curtis theorem	34				
		3.1.5 Badial basis function interpolation	36				
	3.2	Orthogonal polynomials	40				
	0.2	3.2.1 Continuous and discrete inner products	40				
		3.2.2 Bases of orthogonal polynomials	40				
		3.2.3 Application to least squares approximations	43				
	33	Numerical differentiation	43				
	0.0	3.3.1 Finite difference approximations	43				
		3.3.2 Beyond finite differences	45				
	34	Numerical integration	45				
	0.1	3 4 1 The basic idea: Quadrature rules	46				
		3.4.2 What do we want? Exactness and stability	46				
		3 4 3 Interpolatory quadrature rules	47				
	3.5	Time integration	50				
	0.0	3.5.1 The method of lines	51				
		3.5.2 Preferred method for time integration	51				
		3.5.3 Strong stability of explicit Bunge-Kutta methods	51				
		5.5.5 Strong stability of explicit itunge Rutta methods	91				
4	Stable high order quadrature rules for experimental data I: Nonnegative						
	weight functions						
	4.1	Motivation	53				
	4.2	Least squares quadrature rules	54				

		4.2.1	Formulation as a least squares problem	54
		4.2.2	Characterization by discrete orthonormal polynomials	55
		4.2.3	Weighted least squares quadrature rules	56
	4.3	Stabili	ty of least squares quadrature rules	57
		4.3.1	Main result and consequences	57
		4.3.2	Proof of the main result	58
	4.4	Numer	ical tests	61
		4.4.1	Comparison of different inner products	61
		4.4.2	Minimal number of quadrature points for different weight functions	64
		4.4.3	Accuracy on equidistant points	65
		4.4.4	Accuracy on scattered points	66
	4.5	Conclu	iding thoughts and outlook	67
5	Sta	ble higl	h order quadrature rules for experimental data II: General weigh	t
	fun	ctions	I	69
	5.1	Motiva	tion	69
	5.2	Stabili	ty concepts for general weight functions	70
	5.3	Stabili	ty of least squares quadrature rules	72
		5.3.1	Main results	72
		5.3.2	Preliminaries on discrete Chebyshev polynomials	73
		5.3.3	Proofs of the main results	74
	5.4	Nonne	gative least squares quadrature rules	77
		5.4.1	The nonnegative least squares problem	78
		5.4.2	Formulation as a nonnegative least squares problem	78
	5.5	Numer	ical results	79
		5.5.1	Implementation details	79
		5.5.2	Stability	79
		5.5.3	Sign-consistency	80
		5.5.4	Exactness	81
		5.5.5	Accuracy for increasing N	82
		5.5.6	Accuracy for increasing d	84
		5.5.7	Ratio between d and N	85
	5.6	Conclu	ding thoughts and outlook	88
6	Hig	h order	r numerical methods for conservation laws	89
Ū	6.1	Discon	tinuous Galerkin spectral element methods	90
	0.1	611	Introduction	90
		6.1.2	The analytical discontinuous Galerkin method	91
		613	The discontinuous Galerkin collocation spectral element method	92
		6.1.0	Matrix vector notation	92
	62	Flux re	econstruction methods	94
	0.2	621	General idea	94
		62.1	Flux reconstruction and summation by parts operators	9 <u>1</u> 05
		6.2.2	Outlook on new stability results	95
_	T	-		• •
7	1W0	o novel	nign order methods	97
	(.1		discretizations of DG methods on equidistant and scattered points	97
		(.1.1 710		98
		(.1.2	Discrete least squares approximations	98
		7.1.3	Proposed discretization of the discontinuous Galerkin method	99

		7.1.4 Conservation and stability	102
		7.1.5 Numerical results	104
		7.1.6 Concluding thoughts and outlook	112
	7.2	Stable radial basis function methods	113
		7.2.1 Motivation	114
		7.2.2 State of the art: Stability of radial basis function methods	115
		7.2.3 General idea	116
		7.2.4 Weak radial basis function analytical methods	116
		7.2.5 Weak radial basis function collocation methods	119
		7.2.6 Relationship to other methods	121
		7.2.7 Efficient implementation	122
		7.2.8 Numerical results	126
		7.2.9 Concluding thoughts and outlook	130
8	Δrt	ificial viscosity methods	133
0	A 10.	The idea behind artificial viscosity	133
	0.1 Q 9	State of the art	125
	0.2	8.2.1 Deregon and Dereine: Discouring constant artificial vigoosities	100
		8.2.1 Persson and Peraire: Piecewise constant artificial viscosities	100
		8.2.2 Barter and Darmoral: Smoothing the artificial viscosity	130
	0.9	8.2.3 Klockher et al.: Piecewise linear artificial viscosities	130
	8.3	Conservation and stability properties	130
		8.3.1 Conservation \ldots	13/
	0.4	8.3.2 Entropy dissipation	138
	8.4	New viscosity distributions	139
	8.5	Modal filtering	139
	8.6	Discretization of artificial viscosity terms using SBP operators	143
	8.6 8.7	Concluding thoughts	143 146
9	8.6 8.7 ℓ^1 r	Concluding thoughts	143 146
9	8.6 8.7 ℓ^1 r Gale	Concluding thoughts	143 146 5 149
9	8.6 8.7 ℓ^1 r Gale 9.1	Discretization of artificial viscosity terms using SBP operators	143 146 5 149 149
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 151 151 152 154 155
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155
9	8.6 8.7 ℓ^1 r Gal 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 155
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 151 151 152 154 155 155 156 158
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 5 149 151 151 152 154 155 155 156 158 159
9	 8.6 8.7 ℓ¹ r Gale 9.1 9.2 9.3 	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 152 154 155 155 156 158 159 161
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 155 155 155 156 158 159 161 165
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 156 158 159 161 165 165
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 155 156 158 159 161 165 165 168
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 155 155 155 155 158 159 161 165 165 168 168
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3 9.4	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 155 156 158 159 161 165 168 168 168 172
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3 9.3 9.4 9.5 Sho	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 155 156 158 159 161 165 165 168 168 172 173
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3 9.3 9.4 9.5 Sho 10.1	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 154 155 155 156 158 159 161 165 168 168 168 172 173
9	8.6 8.7 ℓ^1 r Gale 9.1 9.2 9.3 9.3 9.3 9.4 9.5 Sho 10.1	Discretization of artificial viscosity terms using SBP operators	143 146 149 149 151 151 152 155 155 155 156 158 159 161 165 168 168 172 173 174

10.2 The Bernstein procedure 178 10.2.1 Related works 178 10.2.2 Bernstein reconstruction 178 10.2.3 Proposed procedure 179 10.2.4 Selection of parameter α 180 10.2.5 Discontinuity sensor 181 10.3 Entropy, total variation, and monotone (shock) profiles 182 10.3.1 Entropy stability 182 10.3.2 Total variation 184 10.3.3 Monotone (shock) profiles 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 185 10.4.1 Linear advection equation 191 10.4.2 Inviscid Burgers' equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1.1 Conservation and dissipation - continuous setting 199 11.2.2 Conservation 200 11.2.3 Entropy dissipation 200 11.2.4 In a uutshell 201 11.3 High order FD methods based on SB' operators 202 11.4.1 Conservation 204 11.4.2 Entropy dissipation 206 11.2.3 High order rD metho			10.1.2 Approximation properties	175	
10.2.1 Related works17810.2.2 Bernstein reconstruction17810.2.3 Proposed procedure17910.2.4 Selection of parameter α 18010.3 Entropy, total variation, and monotone (shock) profiles18210.3.1 Entropy, stability18210.3.2 Total variation, and monotone (shock) profiles18210.3.3 Monotone (shock) profiles18510.4 Numerical results18510.4 Numerical results18510.4.1 Linear advection equation18610.4.2 Invised Burgers' equation18910.4.3 A concave flux function19110.4.4 The Buckley-Leverett equation19310.5 Concluding thoughts and outlook19411 High order edge sensor steered artificial viscosity operators19711.1 Generalized artificial viscosity operators19711.2 Our contribution19911.2 Conservation and dissipation20011.2.2 Energy dissipation20011.2.3 Entropy dissipation20011.2 Lassipation20011.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5.1 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20611.5.1 High order edge sensors and polynomial annihilation20611.5.1 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge senso	10).2	The Bernstein procedure	178	
10.2.2Bernstein reconstruction17810.2.3Proposed procedure17910.2.4Selection of parameter α 18010.2.5Discontinuity sensor18110.3Entropy total variation, and monotone (shock) profiles18210.3.1Entropy stability18210.3.2Total variation18410.3.3Monotone (shock) profiles18510.4Numerical results18510.4.1Linear advection equation18910.4.2Inviscid Burgers' equation19310.4.3A concave flux function19110.4.4The Buckley-Leverett equation19310.5Concluding thoughts and outlook19411High order edge sensor steered artificial viscosity operators19711.1Generalized artificial viscosity operators19711.2Our contribution19911.2Conservation and dissipation - continuous setting19911.2.1Conservation20011.2.3Entropy dissipation20011.2.4In a mitshell20111.3High order FD methods based on SBP operators20211.4Conservation and dissipation - discrete setting20311.4.1Conservation20411.4.2Entropy dissipation20411.3High order FD methods based on SBP operators20211.4Conservation and dissipation - discrete setting20311.4.4In a mitshell20611.5.			10.2.1 Related works	178	
10.2.3 Proposed procedure17910.2.4 Selection of parameter α 18010.3.5 Discontinuity sensor18110.3 Entropy, total variation, and monotone (shock) profiles18210.3.1 Entropy stability18210.3.2 Total variation18410.3.3 Monotone (shock) profiles18510.4.1 Linear advection equation18610.4.2 Inviscid Burgers' equation19310.4.3 A concave flux function19110.4.4 The Buckley-Leverett equation19310.5 Concluding thoughts and outlook19411 High order edge sensor steered artificial viscosity operators19711.1 Generalized artificial viscosity operators19711.1 Generalized artificial viscosity operators19911.2 Conservation20011.2.2 Energy dissipation20011.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4 Conservation20411.4.2 Energy dissipation20411.4.1 Conservation20411.4.2 Energy dissipation20411.4.2 Energy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensor steered artificial viscosity operators20611.3 Entropy dissipation20411.4.1 Conservation20411.4.2 Energy dissipation20511.4.4 In a nutshell20611.5.1 High order edge sensor steered artificial viscos			10.2.2 Bernstein reconstruction	178	
10.2.4 Selection of parameter α 18010.3.5 Discontinuity sensor18110.3 Entropy, total variation, and monotone (shock) profiles18210.3.1 Entropy stability18210.3.2 Total variation18410.3.3 Monotone (shock) profiles18510.4 Numerical results18510.4.1 Linear advection equation18610.4.2 Inviscid Burgers' equation19910.4.3 A concave flux function19110.4.4 The Buckley-Leverett equation19310.5 Concluding thoughts and outlook19411 High order edge sensor steered artificial viscosity operators19711.1.1 State of the art19811.2 Our contribution19911.2.1 Conservation20011.2.2 Energy dissipation20011.2.3 Entropy dissipation20011.3 High order FD methods based on SBP operators20211.4 Conservation20411.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20411.4.4 In a nutshell20411.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity strength21311.6.4 Choosing a sensing variable21311.6.1 Linear advection equation21311.6.2 Burgers' equation21311.6.3 Euler equations of gas dynamics21511.6.3 Euler quations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook225 <tr< th=""><td></td><td></td><td>10.2.3 Proposed procedure</td><td>179</td></tr<>			10.2.3 Proposed procedure	179	
10.2.5 Discontinuity sensor 181 10.3 Entropy, total variation, and monotone (shock) profiles 182 10.3.1 Entropy stability 182 10.3.2 Total variation 184 10.3.3 Monotone (shock) profiles 185 10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 193 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.4.1 Conservation 204 11.4.2 Conservation 204 11.4.1 Conservation 204 11.4.2 Conservation 204 11.4.1 Conservation 204 11.4.2 Conservation 204 11.4.1 Conservation 204 <			10.2.4 Selection of parameter α	180	
10.3 Entropy, total variation, and monotone (shock) profiles 182 10.3.1 Entropy stability 182 10.3.2 Total variation 184 10.3.3 Monotone (shock) profiles 185 10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.2 Our contribution 199 11.2.1 Conservation and dissipation - continuous setting 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 1.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discret setting 204 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 <t< th=""><td></td><td></td><td>10.2.5 Discontinuity sensor</td><td>181</td></t<>			10.2.5 Discontinuity sensor	181	
10.3.1 Entropy stability 182 10.3.2 Total variation 184 10.3.3 Monotone (shock) profiles 185 10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 State of the art 198 11.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.4 In a nutshell 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206	10).3	Entropy, total variation, and monotone (shock) profiles	182	
10.3.2 Total variation 184 10.3.3 Monotone (shock) profiles 185 10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 193 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.2 Our contribution 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a mutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.3 Entropy dissipation 206 11.5.4 High order edge sensor steered artificial viscosity operators 202 11.4 Conservation 204 11.4.1 Conservation 204 11.4.1 an autshell <			10.3.1 Entropy stability	182	
10.3.3 Monotone (shock) profiles 185 10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.2.0 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 204 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.4 In a nutshell 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity strength 210 11.5.3 Scaling the viscosity strength 213			10.3.2 Total variation	184	
10.4 Numerical results 185 10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley–Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 205 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steere			10.3.3 Monotone (shock) profiles	185	
10.4.1 Linear advection equation 186 10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley–Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.2 Our contribution 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 213 11.6 Numerical results 213 11.6.1 Lin	10).4	Numerical results	185	
10.4.2 Inviscid Burgers' equation 189 10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation 204 11.4.2 Energy dissipation 205 11.4.3 Entropy dissipation 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 Scaling the viscosity 209 <	-		10.4.1 Linear advection equation	186	
10.4.3 A concave flux function 191 10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1 State of the art 198 11.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.3 Entropy dissipation 200 11.2 A In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.4 In a nutshell 205 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity strength 210 11.5.4 C			10.4.2 Inviscid Burgers' equation	189	
10.4.4 The Buckley-Leverett equation 193 10.5 Concluding thoughts and outlook 194 11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 200 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 205 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.2 Distributing the viscosity strength 210 11.5.4 Choosing a sensing variable 213 11.6.6 Numerical results 213			10.4.3 A concave flux function	191	
10.5 Concluding thoughts and outlook19411 High order edge sensor steered artificial viscosity operators19711.1 Generalized artificial viscosity operators19711.1.1 State of the art19811.1.2 Our contribution19911.2 Conservation and dissipation - continuous setting19911.2.1 Conservation20011.2.2 Energy dissipation20011.2.3 Entropy dissipation20011.2.4 In a nutshell20111.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20511.4.4 In a nutshell20511.4.4 In a nutshell20611.5.1 High order edge sensor steered artificial viscosity operators20611.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			10.4.4 The Bucklev–Leverett equation	193	
11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 206 11.4.3 Entropy dissipation 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.3 Coling a sensing variable 213 11.6.1 Linear advection equation 213 11.6.2 Burgers' equation 215 11.6.3 Euler equations of gas dynamics 216 11.7	10) 5	Concluding thoughts and outlook	194	
11 High order edge sensor steered artificial viscosity operators 197 11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 206 11.4.3 Entropy dissipation 206 11.5.4 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 213 11.6.1 Linear advection equation 213 11.6.2 Burgers' equation 215 11.6.3 Euler equations of gas dynamics 216 <	10			101	
11.1 Generalized artificial viscosity operators 197 11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2 Conservation 200 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.3 High order FD methods based on SBP operators 202 11.4 Conservation 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 204 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.4 Choosing a sensing variable 213 11.6 Numerical results 213 11.6.1 Linear advection equation 213	11 H	igł	n order edge sensor steered artificial viscosity operators	197	
11.1.1 State of the art 198 11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2 Conservation 200 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 213 11.6 Numerical results 213 11.6.1 Linear advection equation 213 11.6.2 Burgers' equation 215 11.6.3 Euler equations of gas dynamics 216 11.7 Concluding thoughts and outlook 225 12 Summary and outlook	11	1.1	Generalized artificial viscosity operators	197	
11.1.2 Our contribution 199 11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 210 11.5.4 Choosing a sensing variable 213 11.6.1 Linear advection equation 213 11.6.2			11.1.1 State of the art	198	
11.2 Conservation and dissipation - continuous setting 199 11.2.1 Conservation 200 11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensors and polynomial annihilation 207 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 213 11.6.1 Linear advection equation 213 11.6.2 Burgers' equation 215 11.7 Concluding thoughts and outlook 227 Bibliography 229 Index 249			11.1.2 Our contribution	199	
11.2.1 Conservation20011.2.2 Energy dissipation20011.2.3 Entropy dissipation20011.2.4 In a nutshell20111.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20411.4.4 In a nutshell20411.5 High order edge sensor steered artificial viscosity operators20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21311.6.4 Choosing a sensing variable21311.6.5 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249	11	1.2	Conservation and dissipation - continuous setting	199	
11.2.2 Energy dissipation 200 11.2.3 Entropy dissipation 200 11.2.4 In a nutshell 201 11.3 High order FD methods based on SBP operators 202 11.4 Conservation and dissipation - discrete setting 203 11.4.1 Conservation 204 11.4.2 Energy dissipation 204 11.4.3 Entropy dissipation 205 11.4.4 In a nutshell 206 11.5 High order edge sensor steered artificial viscosity operators 206 11.5.1 High order edge sensor steered artificial viscosity operators 206 11.5.2 Distributing the viscosity 209 11.5.3 Scaling the viscosity strength 210 11.5.4 Choosing a sensing variable 213 11.6 Numerical results 213 11.6.2 Burgers' equation 215 11.6.3 Euler equations of gas dynamics 216 11.7 Concluding thoughts and outlook 225 12 Summary and outlook 227 Bibliography 229 Index 249			11.2.1 Conservation	200	
11.2.3 Entropy dissipation20011.2.4 In a nutshell20111.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21311.6 Numerical results21311.6.1 Linear advection equation21511.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.2.2 Energy dissipation	200	
11.2.4 In a nutshell20111.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensor steered artificial viscosity operators20611.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21311.6 Numerical results21311.6.1 Linear advection equation21511.6.2 Burgers' equation21511.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.2.3 Entropy dissipation	200	
11.3 High order FD methods based on SBP operators20211.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21311.6 Numerical results21311.6.1 Linear advection equation21511.6.2 Burgers' equation21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.2.4 In a nutshell	201	
11.4 Conservation and dissipation - discrete setting20311.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249	11	1.3	High order FD methods based on SBP operators	202	
11.4.1 Conservation20411.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249	11	1.4	Conservation and dissipation - discrete setting	203	
11.4.2 Energy dissipation20411.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249			11.4.1 Conservation	204	
11.4.3 Entropy dissipation20511.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249			11.4.2 Energy dissipation	204	
11.4.4 In a nutshell20611.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.4.3 Entropy dissipation	205	
11.5 High order edge sensor steered artificial viscosity operators20611.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.4.4 In a nutshell	206	
11.5.1 High order edge sensors and polynomial annihilation20711.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249	11	1.5	High order edge sensor steered artificial viscosity operators	206	
11.5.2 Distributing the viscosity20911.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21311.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook227Bibliography229Index249			11.5.1 High order edge sensors and polynomial annihilation	207	
11.5.3 Scaling the viscosity strength21011.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21311.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.5.2 Distributing the viscosity	209	
11.5.4 Choosing a sensing variable21311.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21311.6.3 Euler equations of gas dynamics21511.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.5.3 Scaling the viscosity strength	210	
11.6 Numerical results21311.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.5.4 Choosing a sensing variable	213	
11.6.1 Linear advection equation21311.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249	11	1.6	Numerical results	213	
11.6.2 Burgers' equation21511.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.6.1 Linear advection equation	213	
11.6.3 Euler equations of gas dynamics21611.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.6.2 Burgers' equation	215	
11.7 Concluding thoughts and outlook22512 Summary and outlook227Bibliography229Index249			11.6.3 Euler equations of gas dynamics	216	
12 Summary and outlook227Bibliography229Index249	11	1.7	Concluding thoughts and outlook	225	
12 Summary and outlook227Bibliography229Index249		•			
Bibliography 229 Index 249	$12 \mathrm{S}$	um	mary and outlook 2	227	
Index 249	Bibli	iog	raphy	229	
	Inde	Index			